- 相關(guān)推薦
數(shù)學(xué)函數(shù)心得體會
心中有不少心得體會時,心得體會是很好的記錄方式,這樣我們就可以提高對思維的訓(xùn)練。怎樣寫好心得體會呢?下面是小編整理的數(shù)學(xué)函數(shù)心得體會,僅供參考,大家一起來看看吧。
數(shù)學(xué)函數(shù)心得體會1
轉(zhuǎn)眼間,與數(shù)學(xué)相處的時間已有十二年矣,此間,欽佩前人智慧,享受邏輯快樂,驚嘆數(shù)學(xué)之美。正如一個數(shù)學(xué)系的朋友說:“宇宙是美的,星空是美的,數(shù)學(xué)的世界更是美的!”
盡管我們要把理論學(xué)好學(xué)扎實,但我自己也要培養(yǎng)實際操作能力,在本書與高等數(shù)學(xué)中都有積分計算,某些積分計算往往是難到要做好幾小時的,在王老師的推薦下買了吉米多維奇數(shù)學(xué)分析習(xí)題集題解,很有用,這書就好比是字典,題典,有不會,我就向它尋求適當(dāng)?shù)慕夥,有時,閑暇之余還會與同寢室同學(xué)共同研究方法的優(yōu)劣,我發(fā)現(xiàn)我的解法往往麻煩繁瑣。蔣科偉,呂孫權(quán)的做法有時可作為我修改的借鑒,其實,作為一名數(shù)學(xué)專業(yè)的學(xué)生來說,應(yīng)該具有團隊配合的`意識,加強對實際應(yīng)用知識的學(xué)習(xí),更多關(guān)注學(xué)科的變化,培養(yǎng)對問題的思考。在研究積分題的過程中,我鞏固了所學(xué)的積分概念,有效地提高我的運算能力,特別是有些難題還迫使我學(xué)會綜合分析的思維方法。寫到這我想起高中老師曾講過在不等式證明中的綜合法,原來在高中我已接觸了大學(xué)知識,忽然又發(fā)現(xiàn)高中老師講過許多上海高考都不考的知識,都是對我大學(xué)學(xué)習(xí)的良好鋪墊,受益匪淺。實踐出真知,至理啊!在自學(xué)高等數(shù)學(xué)期間也有過困難,有時感到學(xué)的太多,雜了。遇到困難,幸好有數(shù)學(xué)分析這門課給與理論支持!在統(tǒng)計班同學(xué)考試資料的支持下,我還是多少學(xué)到點東西與解題技巧的。這很是讓我感到欣慰啊。
現(xiàn)在是科技的時代,在掌握好基本運算后我們接觸了數(shù)學(xué)軟件——Mathematica。該軟件是應(yīng)用廣泛的數(shù)學(xué)軟件,它不僅可以進行各種數(shù)值運算,而且可以進行符號運算、函數(shù)作圖等。此軟件使我理解導(dǎo)數(shù)、微分概念,理解泰勒公式,函數(shù)的N次近似多項式及余項概念,了解N次近似多項式隨N增大一般是逐步逼近原函數(shù)的結(jié)果。熟悉了Mathematica數(shù)學(xué)軟件的求導(dǎo)數(shù)和求微分命令,以及求n階泰勒公式命令和求函數(shù)的n次近似多項式命令。不僅如此,我還通過它理解了不定積分、變上限函數(shù)和定積分概念,了解定積分的簡單近似計算方法。這些正如諾基亞的廣告詞:科技以人為本。有了這些,對于我們來說,計算不再是困難,在高等數(shù)學(xué)的計算部分的自學(xué)中也可操作自如,再加上我的英語基礎(chǔ)較好,在寒假下載了MATHEMATICA6操作軟件,初試時還是有難度的,但在王老師下發(fā)的操作資料中還是有很強的輔助作用的。現(xiàn)在數(shù)學(xué)給了我自信,讓我尋找其中的樂趣!
在這第一學(xué)期,王老師對我的幫助太大了!原來的我雖然數(shù)學(xué)基礎(chǔ)較好,但初學(xué)分析我是真的一籌莫展,這時,王老師對我學(xué)習(xí)中的的問題耐心又仔細地回答,讓我在一次次郁悶中尋找到真知!正因為老師的不辭辛勞的幫助,讓我取得現(xiàn)有的成績,這還僅僅是一部分,老師對我思想與在帶班級上也給出過幫助,讓我各方面都在原有的基礎(chǔ)上得到巨大的提高,使我更能看清自己的能力與潛力,老師謝謝你對我在一學(xué)期的幫助,我會繼續(xù)努力的,盡管我離班級學(xué)習(xí)最好的同學(xué)差距甚遠,但我不會放棄努力與奮斗的目標(biāo),我會達到更高的數(shù)學(xué)領(lǐng)地,取得更好的成績.
數(shù)學(xué)函數(shù)心得體會2
在十幾年的學(xué)習(xí)數(shù)學(xué)的過程中,我自己不斷地總結(jié)與反思,認(rèn)為做到以下四點對學(xué)好數(shù)學(xué)較為重要:
興趣濃厚。所謂“興趣是最好的老師”,此言不虛。就我個人而言,在課余時間涉獵數(shù)學(xué)類書籍一直是我保存至今的一大愛好;緊張忙碌的高中生活中,我也曾抽出時間看些數(shù)學(xué)中與高考無關(guān)的知識,比如,多項式理論初步、不動點法求解數(shù)列、極限與微元法等等。這些并沒有影響平時的學(xué)習(xí),反而是拓寬解題思路,多角度全面考慮問題。所以培養(yǎng)興趣相當(dāng)重要。
基礎(chǔ)扎實!案叩葦(shù)學(xué)中的很多問題是用高等數(shù)學(xué)中的特有的方法將其轉(zhuǎn)化為初等數(shù)學(xué)能夠解決的問題,所以初等數(shù)學(xué)基礎(chǔ)的重要性不言而喻。”——引自劉銳老師語。初等數(shù)學(xué)是數(shù)學(xué)大廈的根基,沒有初等基礎(chǔ)即便記住了高等數(shù)學(xué)中的方法也是枉然與徒勞。
態(tài)度認(rèn)真。常說“態(tài)度決定一切”,雖說有些夸張,但也非無事實根據(jù)的絕對論斷,它強調(diào)了在學(xué)習(xí)中認(rèn)真的態(tài)度對于進步以及最終的結(jié)果的決定性作用。
時間投入。當(dāng)效率一定時,收獲與時間成正比。每個人的悟性與接受新事物的能力略有不同,但在時間上可以得到部分彌補。時間投入的多少影響著學(xué)習(xí)的效果。
數(shù)學(xué)是科學(xué)而不是學(xué)科,不應(yīng)將考試作為學(xué)習(xí)數(shù)學(xué)的最終目的。數(shù)學(xué)的學(xué)習(xí)不僅是知識的接受更是思想的領(lǐng)悟,歐拉曾認(rèn)為“科學(xué)家如果做出了給科學(xué)寶庫增加財富的'發(fā)現(xiàn),而未能坦率闡明那些引導(dǎo)他做出發(fā)現(xiàn)的思想,那將沒有給科學(xué)做出足夠的工作——巨大的遺憾”?梢,思想重于知識。學(xué)習(xí)一套新的理論,必知理論產(chǎn)生的背景、理論產(chǎn)生的必要性、理論解決的歷史問題以及理論中蘊含的獨特思想,方可說掌握了這一理論。每個老師都會傳授知識,但并不是每個老師都會說知識的背景、作用及對后世新理論的產(chǎn)生的影響。這也就是為何不同老師講授相同的知識時,我們感覺知識的難易程度不同。
【數(shù)學(xué)函數(shù)心得體會】相關(guān)文章:
數(shù)學(xué)教案:函數(shù)與方程02-25
數(shù)學(xué)函數(shù)的教案 15篇03-06
函數(shù)的概念的數(shù)學(xué)教案02-07
數(shù)學(xué)函數(shù)的教案(通用20篇)01-08