- 解直角三角形的應(yīng)用教學反思 推薦度:
- 相關(guān)推薦
《解三角形應(yīng)用》教學反思
身為一名剛到崗的教師,我們要有很強的課堂教學能力,寫教學反思能總結(jié)教學過程中的很多講課技巧,那要怎么寫好教學反思呢?下面是小編精心整理的《解三角形應(yīng)用》教學反思,僅供參考,希望能夠幫助到大家。
《解三角形應(yīng)用》教學反思1
隨著“五嚴規(guī)定”的實施,給九年級數(shù)學教學帶來了許多挑戰(zhàn)。例如教學時間縮短了,有限的教學時間里教師往往首先保證進度,往往學生的習慣的培養(yǎng)、能力的提升有所忽視;再如考試次數(shù)減少了,教師、學生雙方對教與學的效果反饋難以得到及時準確的信息,學習內(nèi)容的針對性、有效性難以保證;還有學生不全部在校晚自習了,學習方式的改變會帶來一系列的問題。針對以上情況,20xx年3月25日,在高港區(qū)教研室和初中數(shù)學名師工作室的安排下,舉行了“初中數(shù)學一輪復習研討會”活動,我有幸在高港中學上了一節(jié)“解直角三角形的應(yīng)用”的復習研討課,下面我就本節(jié)課談?wù)勛约旱南敕ā?/p>
本節(jié)課的復習目標是:掌握直角三角形的邊角關(guān)系并能靈活運用;會運用解直角三角形的知識,利用已知的邊和角,求未知的邊和角;能結(jié)合仰角、俯角、坡度等知識,綜合運用勾股定理與直角三角形的.邊角關(guān)系解決生活中的實際問題。因為是中考一輪復習,所以我先將課前自主復習部分讓學生課前獨立完成教師批閱,這樣在上課前授課老師能做到心中有數(shù),再針對課前自主復習部分的題目有側(cè)重性的講,真正做到有惑必解,有疑必答。
本節(jié)課我共設(shè)計了3條例題,一是臺風中心的運動問題,涉及到了仰角和俯角問題;第2題是一條20xx年的中考題,我將題目變式為3小題,將坡角、坡度、以及基本圖形的滲透都融合在一題中,讓學生學會分析、類比,并能獨立歸納出此類題的解法,抓住題中的基本圖形進行解題;第3題是一條設(shè)計方案題,目的讓學生選擇測量工具運用解直角三角形的知識測量出塔的高度,并適當變式,如果當塔的底部不能直接到達測量時,如何設(shè)計方案求出塔高。
課上完后,我認真總結(jié)了本節(jié)課的得與失,本節(jié)課的主要失誤的地方有兩點,一是例1的處理上,應(yīng)將點與圓的位置關(guān)系和直線與圓的位置關(guān)系結(jié)合例1一起來處理,這樣學生對于為什么作出AD這條輔助線就很明晰了,效果將會更好,;二是小結(jié)時較倉促,應(yīng)該讓學生總結(jié)歸納出此類題的一般解法,找出基本圖形,這樣才有助于讓學生知識形成體系,進一步得以提高。
《課程標準》中指出“教學中應(yīng)當有意識、有計劃地設(shè)計教學活動,引導學生體會數(shù)學之間的聯(lián)系,感受數(shù)學的整體性,不斷豐富解決問題的策略,提高解決問題的能力”,對于初三一輪復習,注重對學生對知識間的溝通與聯(lián)系進行講解,將這些知識點靈活組合,通過綜合性題目所提供的信息,搜尋解決問題的相關(guān)知識點,找出解決問題的方法。在平時教學中能講到中考一模一樣的題目的可能性微乎其微、那怎么辦,教給學生思考方法和解題的策略往往更有用、這樣可以與一反三,會一題可能就會掌握一類題,并在學生理解之后及時復習鞏固,努力把新方法新技巧納入到原有的知識體系中。在解題中應(yīng)該盡量的讓題目一題多解,或者多提一解,盡量在學生思維的的轉(zhuǎn)折點處進行點撥,這樣最有效。
總之,通過本節(jié)課的教學,讓我認識到了自身的不足,非常感謝高港區(qū)名師工作室這個平臺,讓我有了鍛煉自己的機會,也相信通過初三一輪復習研討會,大家對一輪復習有了較清楚的認識,讓初三復習真正高效。
《解三角形應(yīng)用》教學反思2
解直角三角形及其應(yīng)用是本章的重要內(nèi)容。一個直角三角形有三個角、三條邊這六個元素,解直角三角形就是由已知元素求出未知元素的過程。除了一個直角外,知道兩個元素(其中至少有一條邊),就能求出其他元素。這樣的情況一般有五種,而解直角三角形的方法是本章內(nèi)容的重點,因為,本章的學習目的主要就是使學生能夠熟練地解直角三角形。而且也只有掌握了直角三角形的解法,才能夠去解決與直角三角形有關(guān)的應(yīng)用問題。在解直角三角形的應(yīng)用這一節(jié)中,更充分地把“解直角三角形”運用到實際問題中去。通過一系列實際問題的解決,訓練了學生分析與解決實際問題的能力,培養(yǎng)學生把實際問題轉(zhuǎn)化為教學問題的能力。
在教學過程中,首先引導學生已學過的直角三角形有關(guān)元素之間關(guān)系的知識進行歸納整理,然后通過兩道例題,體會直角三角形中除直角外的五個元素中至少要獲得兩個條件,就可以求得三個元素的特點,并歸納兩個條件的類型。通過對直角三角形的理性分析和解題實踐后,讓學生體會到直角三角形中邊角間的關(guān)系。主要通過三角形內(nèi)角和與勾股定律和銳角三角函數(shù)比來表述。此外對不是直角三角形的,要領(lǐng)會數(shù)學化歸的思想,通過作高,轉(zhuǎn)化為直角三角形再來求解。
我覺得這堂課有以下幾個特點:
1、要多給學生練的機會,例2可以讓學生討論完成,當課堂練習。
2、中間的小結(jié),對學生有難度,可以在學生略微思考的情況下,老師做適當引導下,由老師得出,這個結(jié)論并不需要記憶,僅僅是給學生一個直接的感受:原來所有的這一類型的題目都可以這樣解。
3、語速還是過快,要留給學生多的時間思考。
4、講解不宜太多,但是更多的是建立在學生的思維基礎(chǔ)上,所以需要給他們留較多的時間。講的太多反而得不到效果。應(yīng)該注重適當?shù)?提問,把注意力集中在學生的思維上,提高學生的思維品質(zhì)。
5、要多鼓勵學生進行變式訓練,達到自己會編題,知識就掌握牢固了。
總之,本節(jié)課是我對新課程理念的一次嘗試,必存在缺陷,這將促使我進一步研究和探索。在以后的教學中,我在課堂上將努力做到讓沉悶的課堂教學鮮活起來,讓課堂真正成為數(shù)學活動的場所,成為討論交流的學堂,成為學生展示自我的舞臺!
《解三角形應(yīng)用》教學反思3
應(yīng)用題教學是培養(yǎng)學生應(yīng)用數(shù)學能力的一個良好途徑。數(shù)學應(yīng)用題的教學模式一般是直接給出實際問題的解決方案,再讓學生用數(shù)學知識去求解.給出的實際問題有很多并不是學生所能感覺到、體會到的,往往是一些文字、符號、事實、事件等,解決方案的單一性也會使學生感到枯燥、被動.因此在大多數(shù)情況下,應(yīng)用題僅是作為理論聯(lián)系實際和鞏固新知識的一種手段,正如譚良軍在《淺談數(shù)學應(yīng)用意識及其培養(yǎng)》一文中指出的,傳統(tǒng)的應(yīng)用題教學中常存在這樣的“假象”,即在學生學完某一知識后,就給出一個應(yīng)用題,要求學生解答。這種所謂的“應(yīng)用題”,有時是機械的辨別、模仿,強調(diào)的是學生解答數(shù)學問題的能力。它有助于加深學生對知識的鞏固和理解,但對于培養(yǎng)學生的應(yīng)用意識和應(yīng)用能力效果甚微。
要說培養(yǎng)學生的應(yīng)用意識,那本節(jié)得設(shè)計成一節(jié)實踐探討課,教學時先介紹測量工具,讓學生清楚工具可以做哪些測量,再根據(jù)老師給出的問題自行設(shè)計解決方案.接著組織學生探討方案的實效性.最后對可行的方案,自編數(shù)據(jù),完成解題過程.教師只負責引領(lǐng)學生促使問題的探討層層深入。
問題一:如何測量距離。
1.兩點間不可拉線測量,但測量者可以到達兩端。比如計算隧道的長度
2.兩點中有一點不可到達,比如測量小島到岸邊的距離 3.兩點都不可到達。隔河可以看到兩目標A、B,但不能到達.求A、B之間的距離。
進一步深化將實際問題轉(zhuǎn)化為數(shù)學問題的過程與方法,通過對問題的解決,使每一個參與者都深深地感受到了數(shù)學應(yīng)用的`靈活性、開放性。 問題二:如何測量高度。
1.底部可以到達。比如操場上旗桿的高度 2.底部不可以到達。 比如測酒店的高度 問題三:如何測量角度。比如船的航向。
將生活中的各種不可測的距離由淺入深的引入解決.讓學生親身經(jīng)歷和體驗運用解三角形的知識可以變“不可測”為“可以算”.使學生感受到“生活處處有數(shù)學”,提高應(yīng)用數(shù)學的意識。在學習過程中鼓勵學生深入、開放性地提出測算方案,提倡多元思考。
如此設(shè)計改變了封閉的傳統(tǒng)應(yīng)用題解決模式,把學生的學習融入到豐富多彩的生活場景之中.通過對實際問題解決方案的設(shè)想與構(gòu)造,既熟練了數(shù)學知識,又使學生發(fā)展了想象力和創(chuàng)造力,形成鉆研精神和科學態(tài)度.另外通過對方案實效性的探討與編題解題,加強了學生的數(shù)學表達和交流能力,同時增強了合作精神
培養(yǎng)學生的數(shù)學應(yīng)用意識是一個循序漸進的長期過程,光靠解一些應(yīng)用題是很難培養(yǎng)起學生的數(shù)學應(yīng)用意識的。應(yīng)用意識的培養(yǎng)途徑應(yīng)該有多方面。本文提到的設(shè)計實際問題的解決方案就是一種很好的培養(yǎng)手段。
《解三角形應(yīng)用》教學反思4
掌握直角三角形的邊角關(guān)系并能靈活運用;會運用解直角三角形的知識,利用已知的邊和角,求未知的邊和角;能結(jié)合仰角、俯角、坡度等知識,綜合運用勾股定理與直角三角形的邊角關(guān)系解決生活中的實際問題。
《課程標準》中指出“教學中應(yīng)當有意識、有計劃地設(shè)計教學活動,引導學生體會數(shù)學之間的聯(lián)系,感受數(shù)學的整體性,不斷豐富解決問題的策略,提高解決問題的能力”,注重對學生對知識間的溝通與聯(lián)系進行講解,將這些知識點靈活組合,通過綜合性題目所提供的信息,搜尋解決問題的相關(guān)知識點,找出解決問題的方法。在平時教學中能講到中考一模一樣的'題目的可能性微乎其微.那怎么辦,教給學生思考方法和解題的策略往往更有用.這樣可以舉一反三,會一題可能就會掌握一類題,并在學生理解之后及時復習鞏固,努力把新方法新技巧納入到原有的知識體系中。在解題中應(yīng)該盡量的讓題目一題多解,或者多提一解,盡量在學生思維的的轉(zhuǎn)折點處進行點撥,這樣最有效。
《解三角形應(yīng)用》教學反思5
回顧本節(jié)課,雖然我花費了很多的心思合理設(shè)計了本課,但在實際教學的環(huán)節(jié)中,還是出現(xiàn)了一些問題:
1、教學中不能把學生的大腦看做“空瓶子”。我發(fā)現(xiàn)按照自己的意愿在往這些“空瓶子”里“灌輸數(shù)學”,結(jié)果肯定會導致陷入誤區(qū),因為師生之間在數(shù)學知識、數(shù)學活動經(jīng)驗等方面存在很大的差異,這些差異使得他們對同一個教學活動的感覺通常是不一樣的,所以是不是應(yīng)該在教學過程中盡可能多的把學生的思維過程暴露出來,頭腦中的問題“擠”出來,在碰撞中產(chǎn)生智慧的火花,這樣才能找出癥結(jié)所在,讓學生理解的更加到位。
2、教學中應(yīng)注重學生思維多樣性的培養(yǎng)。數(shù)學教學的探究過程中,對于問題的結(jié)果應(yīng)是一個從“求異”逐步走向“求同”的過程,而不是在一開始就讓學生沿著教師預先設(shè)定好方向去思考,這樣感覺像是整個課堂僅在我的.掌握之中,每個環(huán)節(jié)步步指導,層層點拔,惟恐有所紕漏,實際上卻是控制了學生思維的發(fā)展。再加上我是急性子,看到學生一道題目要思考很久才能探究出答案,我就每次都忍不住在他們即將做出答案的時候?qū)⒎椒ǜ嬖V他們。這樣容易造成學生對老師的依賴,不利于學生獨立思考和新方法的形成。其實我也忽視了,教學時相長的,學生的思維本身就是一個資源庫,他們說不定就會想出出人意料的好方法來。
另外,這一節(jié)課對我的啟發(fā)是很大的。教學過程不是單一的引導的過程,是一個雙向交流的過程。在教學設(shè)計中,教師有一個主線,即課堂教學的教學目標,學生可以通過教師的教學設(shè)計的思路達到,也可以通過教師的引導,以他們自己的方式來達到,而且效果甚至會更好。因為只有“想學才學得好,只有用自己喜歡的方式學才學的好”。因此,本人通過這次教學體會到,教師在備課時,不僅要“備教材、備學生”,還要針對教學目標整理思路,考慮到課堂上師生的雙向交流;在教學過程中,要留出“交流”的空間,讓學生自由發(fā)揮,要真正給他們“做課堂主人”的機會。
無論是對學生還是教師,每一個教學活動的開展都是有收獲的,尤其是作為“引導學生在知識海洋里暢游”的教師,一個教學活動的結(jié)束,也意味著新的挑戰(zhàn)的開始。
總之,這一堂公開課,讓我既收獲了經(jīng)驗,又接受了教訓,我想這些都將會是我今后教學的一筆寶貴財富。
《解三角形應(yīng)用》教學反思6
本節(jié)課是一節(jié)復習課,內(nèi)容是應(yīng)用解直角三角形的知識解決實際問題。在教學設(shè)計中,我針對學生對三角函數(shù)及對直角三角形的邊角關(guān)系認識的模糊,計算能力薄弱等特點,我決定把教學的重、難點放在了解決有關(guān)實際問題的建構(gòu)數(shù)學模型上。通過對知識點的梳理、分析例題的解題思路、例題變式練習及鞏固練習等教學,絕大部分學生能很好地掌握了如何建構(gòu)模型的解決方法,很好地達到了本節(jié)課的教學目的。
由于自己在如何上好一節(jié)復習課上還處在摸索階段,所以在設(shè)計與安排上還存在很多不足,如本節(jié)課設(shè)計容量較大,有1個實際應(yīng)用例題抽象出四個基本變式數(shù)學模型,學生對每個問題逐個探究解答,時間感覺比較緊。但對另外一部分學生來說,他們基礎(chǔ)較弱,對數(shù)學的.應(yīng)用不是那么得心應(yīng)手,不會合理找出邊角關(guān)系,當然就不能準確尋求問題的答案。
我覺得這堂課有以下幾個優(yōu)點:
1、充分調(diào)動了學生參與課堂的積極性。
2、學生敢于提出問題、分析問題。
3、老師起到了引導的作用,小組交流、展示很有成效,兼顧了不同層次學生的學習。
不足:1、中間的小結(jié)讓學生完成更好些
2、給學生思考時間、交流時間過多,獨立完成時間較少。
總之在以后的教學中,講解不宜太多,但是更多的是建立在學生的思維基礎(chǔ)上,所以需要給他們留較多的時間。講的太多反而得不到效果。應(yīng)該注重適當?shù)奶釂,把注意力集中在學生的思維上,提高學生的思維品質(zhì)。在課堂上將努力做到讓沉悶的課堂教學鮮活起來,讓課堂真正成為數(shù)學活動的場所,成為討論交流的學堂,成為學生展示自我的舞臺!
【《解三角形應(yīng)用》教學反思】相關(guān)文章:
解直角三角形的應(yīng)用教學反思04-03
解三角形教學反思01-15
解比例教學反思04-05
解比例教學反思02-07
《解簡易方程》教學反思01-14
《解簡易方程》教學反思03-10
解簡易方程的教學反思02-22
《比的應(yīng)用》教學反思01-18