国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學(xué)反思>解方程教學(xué)反思

解方程教學(xué)反思

時間:2023-02-05 17:52:48 教學(xué)反思 我要投稿

解方程教學(xué)反思

  身為一位到崗不久的教師,課堂教學(xué)是我們的工作之一,通過教學(xué)反思可以很好地改正講課缺點,來參考自己需要的教學(xué)反思吧!下面是小編收集整理的解方程教學(xué)反思,希望對大家有所幫助。

解方程教學(xué)反思

解方程教學(xué)反思1

  教學(xué)解方程共5個例題,以前的教法是利用加減乘除各部分之間的關(guān)系解;新教材使用的方法是利用等式的性質(zhì),應(yīng)該說這種方法不用怎樣理解,方程兩邊同時加減乘除一個數(shù),方程兩邊依然相等。而利用加減乘除各部分之間的關(guān)系解,學(xué)生由于因各部分之間的關(guān)系混亂容易出錯,而初中的.教學(xué)也是利用了等式的性質(zhì),于是和本組老師討論了一下,確定利用等式的性質(zhì)進(jìn)行教學(xué),最后學(xué)生掌握方法之后,再利用加減乘除各部分之間的關(guān)系講解一遍。然后讓學(xué)生根據(jù)自己實際情況靈活運用。

  可是跟設(shè)想的不一樣,利用等式的性質(zhì)進(jìn)行教學(xué)時,有些地方學(xué)生還是不好理解,我分析了一下,覺得存在這樣的問題。

  1、如32-X=45,6÷x=3這樣的方程,X在里面,學(xué)生不好理解為什么方程兩邊同時加X或同時乘X,我和學(xué)生又從天平開始,講解,如果兩邊同時減32,或同時除以6,依然算不出X,我們?nèi)绻瑫r加X或同時乘X,然后變成a+X=b或ax=b的形式,再利用所學(xué)的方法進(jìn)行解方程就可以了,可是依然有部分學(xué)生沒有掌握起來。

  2、書寫問題,利用等式的性質(zhì)進(jìn)行解方程時,書寫比較繁瑣,學(xué)生在比較之后,還是覺得用加減乘除各部分之間的關(guān)系解題時,書寫簡單一些。

  所以,鑒于存在的問題,應(yīng)該讓兩種方法同時并存,讓學(xué)生根據(jù)自己情況,靈活選擇解方程的方法。

解方程教學(xué)反思2

  本節(jié)課的內(nèi)容是在學(xué)生學(xué)習(xí)了用字母表示數(shù)、等式的性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。本冊教材的解方程不僅安排了形如x+a=bx-a=bax=bx÷a=b這樣的簡單方程,還安排了形如a-x=ba÷x=b這樣的特殊方程。

  成功之處:

  1、淡化依據(jù)逆運算關(guān)系解方程,與初中數(shù)學(xué)相銜接。根據(jù)《標(biāo)準(zhǔn)(20xx)》的'要求,從小學(xué)就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法,這樣就避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于改善和加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從而摒棄了原來依據(jù)逆運算解方程的思路,能有效降低學(xué)生學(xué)習(xí)的難度,也降低了記憶的難度。實際上依據(jù)逆運算解方程就是用算術(shù)的思路求未知數(shù),只適合解一些簡單的方程,到了中學(xué)還要重新另起爐灶。因此,利用等式的性質(zhì)解方程能夠幫助學(xué)生深入的理解方程的意義,能深入理解方程所揭示的等量關(guān)系,也更有助于逐步感悟方程的實質(zhì)、等價思想和建模思想。

  2、重點教學(xué)特殊方程,體會用等式性質(zhì)解方程的優(yōu)勢。在例3的教學(xué)中,先讓學(xué)生自主嘗試解方程20-x=9,大部分學(xué)生依據(jù)前面學(xué)習(xí)的內(nèi)容寫成了下面的過程:20-x=9

  解:20-x+20=9+20

  X=29

  可是學(xué)生經(jīng)過檢驗發(fā)現(xiàn)x=29并不是方程的解,從而引導(dǎo)學(xué)生討論怎樣把新知識轉(zhuǎn)化為舊知識來解決問題。

  不足之處:

  1、在練習(xí)中由于課本這樣的練習(xí)太少,沒有增加相應(yīng)的題目,學(xué)生熟練的程度還是比較欠缺。

  2、學(xué)生對于歸納總結(jié)出來的特殊方程的解法還沒有內(nèi)化,導(dǎo)致學(xué)生出現(xiàn)解普通方程和特殊方程在解法上相混淆。

  再教設(shè)計:

  1、及時總結(jié)特殊方程的解法:當(dāng)未知數(shù)是減數(shù)或除數(shù)時,方程兩邊要同時加上或乘未知數(shù),再解方程。

  2、要弄清什么是減數(shù)和除數(shù),避免出現(xiàn)不必要的錯誤。

解方程教學(xué)反思3

  解方程是數(shù)學(xué)領(lǐng)域里一個關(guān)鍵的知識,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點。

在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運用書本的“等式性質(zhì)”解題,還有老教材中提到的運用關(guān)系式各部分之間的關(guān)系來解決?面對困惑,向老教師請教,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運用“移項”解題,學(xué)生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的.原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運用等式基本性質(zhì)教學(xué)孩子會解簡單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學(xué)老教材的“四則運算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會解各種題型的方程。在我看來,這樣的教學(xué)書本的知識不丟,方法又可以多種變通。

  通過這塊知識的整理,我感覺到教材需要教師好好的研究,才能用最合適的方式去教導(dǎo)學(xué)生,數(shù)學(xué)經(jīng)常存在一種一題多解情況,老師就是引導(dǎo)學(xué)生走最好最合適的路。

解方程教學(xué)反思4

  《解方程》是人教課標(biāo)版小學(xué)數(shù)學(xué)五年級上冊第四單元內(nèi)容,本節(jié)課是在認(rèn)識用字母表示數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的,新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。

  我對課時安排及教學(xué)設(shè)計均做了較大調(diào)整。原訂計劃是第一課時完成“方程的解”及“解方程”概念教學(xué),要求學(xué)生掌握方程檢驗的書寫格式,第二課時完成加、減、乘、除各類型方程解法的教學(xué)。調(diào)整后的教案改為第一課時完成“方程的解”及“解方程”概念教學(xué)、會解形如X±A=B的方程,掌握檢驗的格式;第二課時只完成乘除法方程的'解法。我上的是第一課時,其次對于教學(xué)設(shè)計也做了相應(yīng)處理,將例1 改為:X+20=70,又將X-a=b形式的方程穿插學(xué)習(xí)過程之中。

  為什么我會做如此改動呢?基于以下兩點原因:

  1、考慮到學(xué)生一節(jié)課內(nèi)如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規(guī)范書寫格式,內(nèi)容太多,怕影響教學(xué)效果。2、如果能將“解方程”與“方程的解”這兩個概念結(jié)合規(guī)范的解方程書寫過程和結(jié)果來向?qū)W生解釋,更利于學(xué)生理解掌握?傮w思路如下:

  1、從復(fù)習(xí)天平保持平衡的道理入手,引出課題,引導(dǎo)學(xué)習(xí)質(zhì)疑,有利于激發(fā)學(xué)生主動探究、深入學(xué)習(xí)的積極性。

  2、通過自主學(xué)習(xí)、組內(nèi)交流、合作,達(dá)到培養(yǎng)學(xué)生自主、互助的精神。

  3、給足夠的時間讓學(xué)生學(xué)習(xí),讓學(xué)生發(fā)現(xiàn)。

  4、多層次的練習(xí)形式,有利于學(xué)生對知識進(jìn)一步的理解與掌握,并及時有效地鞏固強(qiáng)化概念。

  5、教師始終把學(xué)生放在主體地位,為學(xué)生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學(xué)生掌握正確的學(xué)習(xí)方法,總結(jié)失敗原因,發(fā)揚成功經(jīng)驗,培養(yǎng)良好的學(xué)習(xí)習(xí)慣。

  6、自學(xué)思考匯報交流既有利于每個學(xué)生的自主探索,保證個性發(fā)展,也有利于教師考察學(xué)生思維的合理性和靈活性,考察學(xué)生是否能用清晰的數(shù)學(xué)語言表達(dá)自己的觀點。

  在具體教學(xué)過程中,我從以下幾個方面入手:

  一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

  教學(xué)中我先利用課件演示了“我說你答”的游戲讓學(xué)生回顧:天平兩端同時加上或減去同樣的重量,天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例題X+20=70

  二、利用 等式性質(zhì)解方程-,初步感悟它的妙用

  在計算過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,通過討論:方程X+20=70中左右兩邊同時減去的為什么是20,而不是其它數(shù)呢?讓學(xué)生明白:左邊減去20是為了使方程左邊只剩,右邊減去20是為了使方程兩邊仍然相等!不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)習(xí)活動是那么的有滋有味,進(jìn)而使我很順利地就完成了本課的教學(xué)任務(wù)。

  三、確保正確率,及時進(jìn)行檢驗。

  原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學(xué)生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細(xì)的檢驗過程之后,然后教給學(xué)生一個簡便的檢驗方法,學(xué)生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。

  通過教學(xué),發(fā)現(xiàn)學(xué)生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一點困惑:

  從教材的編排上,整體難度下降,有意避開了,形如:A—X=B 和 A÷X=B等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。但是用減法和除法各部分之間的關(guān)系解答就比較簡單。這會不會與教材主倡導(dǎo)的用等式的性質(zhì)解決問題有矛盾呢?

解方程教學(xué)反思5

  這次教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法,在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù)。而北師大版教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。

  原來教學(xué)由于我個人比較偏好于傳統(tǒng)的教學(xué)方法,在教學(xué)的過程中沒有特別強(qiáng)調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學(xué)生沒能很好地理解等式的性質(zhì),所以大部分的學(xué)生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來計算,只有極個別的'學(xué)生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學(xué)的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學(xué)模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,提供動手操作、實踐以及小組合作、討論的機(jī)會。在教學(xué)的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。

  盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應(yīng)從一個一個具體的等式抽象到未知的等式,學(xué)生容易接受,而我是直接用抽象的等式驗證的,學(xué)生不太容易接受。還有在解方程時,算理講得不太清楚,學(xué)生在解方程時,有部分學(xué)困生學(xué)起來有困難。

  在今后的教學(xué)中,一定要吃透教材,認(rèn)真鉆研教材,才能上出優(yōu)質(zhì)課。

解方程教學(xué)反思6

  本節(jié)課的內(nèi)容是在學(xué)生學(xué)了等式的性質(zhì)和解形如a+x=b x — a =b ax=bx÷a =b這樣的一般方程基礎(chǔ)上進(jìn)行教學(xué)的。成功之處:如何解決形如a — x =b a÷x =b這樣的特殊方程,關(guān)鍵是啟發(fā)學(xué)生思考,根據(jù)哪一條等式性質(zhì),怎樣將新的問題轉(zhuǎn)化為已經(jīng)解決的舊的`問題。在教學(xué)中,我首先讓學(xué)生試做看看遇到了什么樣的難題,部分學(xué)生發(fā)現(xiàn)20—x=9解:20—x—20=9—20在解決問題的過程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當(dāng)學(xué)生無從下手,不知所措的情形下,啟發(fā)學(xué)生當(dāng)我們遇到新問題時怎么解決呢?學(xué)生會想到聯(lián)系前面學(xué)習(xí)的舊知識來解決,那你認(rèn)為應(yīng)該把這樣的減法方程轉(zhuǎn)化為什么運算的方程呢?學(xué)生很容易想到把這樣的減法方程轉(zhuǎn)化為加法方程就可以解決新問題,接著教師再緊跟著啟發(fā)學(xué)生,如何根據(jù)我們學(xué)過的知識進(jìn)行轉(zhuǎn)化呢?

  通過學(xué)生思考、討論和交流,可以根據(jù)等式的性質(zhì)進(jìn)行轉(zhuǎn)化,從而得出:20—x=9在解決特殊方程的過程中,學(xué)生有的解:20—x+x=9+x還想到利用加減法之間的關(guān)系來解決,直20=9+x接得出9+x=20也是可以的,肯定學(xué)生的9+x =20思考方法的合理性,但是也要告訴學(xué)生,9+x—9 =20—9這樣的思考方法到了中學(xué)解決更加復(fù)雜X=11的方程就無能為力了,為了使小學(xué)和中學(xué)的知識能更好的銜接,我們重點應(yīng)用等式的性質(zhì)把特殊方程轉(zhuǎn)化為一般方程,然后依據(jù)一般方程的方法解決問題。不足之處:在練習(xí)中出現(xiàn)個別學(xué)生不注意觀察方程是一般方程還是特殊方程,導(dǎo)致出錯。再教設(shè)計:重點強(qiáng)化特殊方程的特點,讓學(xué)生在解方程的過程中首先要觀察方程的特點,然后采取相應(yīng)的解決問題的方法。

解方程教學(xué)反思7

  五年級第四單元教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法。在以前人教版教材中,學(xué)著解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。

  在教學(xué)前,由于我個人比較偏好于傳統(tǒng)的教學(xué)方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學(xué)思想,更新教學(xué)觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學(xué)模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學(xué)生是學(xué)著的主人”和“教師是學(xué)著的組織者、引導(dǎo)者與合作者”的這一角度上,()為學(xué)生創(chuàng)設(shè)學(xué)著此課的`情境,通過直觀演示,充分給學(xué)生提供小組交流的機(jī)會。在教學(xué)的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,不斷對孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)著活動是那么的有滋有味,進(jìn)而使我很順利地就完成了本課的教學(xué)任務(wù)。

解方程教學(xué)反思8

  方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。

  五年級數(shù)學(xué)上冊第四單元的教學(xué)內(nèi)容是“簡易方程”。為了更好地實現(xiàn)小學(xué)與初中知識的接軌,新教材對簡易方程的解法進(jìn)行了一次改革,將舊教材利用加減乘除法各部分之間關(guān)系解方程,改為讓學(xué)生根據(jù)天平的原理來學(xué)習(xí)方程解法,也就是利用等式的基本性質(zhì)來解方程。舉個例子:

  舊教材:

  x+48=127

  x=127-48

  依據(jù)運算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。

  新教材:

  x+48=127

  x+48-48=127-48

  依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

  在實際教學(xué)中發(fā)現(xiàn),同舊教材的方法相比,現(xiàn)行教材中的'這種解法,學(xué)生更容易接受,他們不必再去記“一個加數(shù)=和-另一個加數(shù)、被減數(shù)=減數(shù)+差……”這些關(guān)系式了,只需根據(jù)等式的基本性質(zhì),想辦法讓方程左邊只剩下X就行。學(xué)生很快就將這種解法運用自如,毫不費力。

  可是,當(dāng)學(xué)到用方程解決實際問題時,卻出現(xiàn)了狀況。

  新教材在改革方程解法的同時,有一個相應(yīng)的調(diào)整,那就是它把形如a-x=b和a÷x=b的方程回避掉了。因為利用等式的基本性質(zhì)解a-x=b、a÷x=b,方程變形的過程及算理解釋比較麻煩。然而,在列方程解決實際問題時,卻不可避免地會出現(xiàn)以上兩種類型的方程。如:“一本書有65頁,王紅看了一部分后,還剩27頁。王紅已經(jīng)看了多少頁?”學(xué)生很自然就列出65—x=27這樣的方程。

  如何解決這個難題?細(xì)讀教參,發(fā)現(xiàn)編者的思路是,當(dāng)需要列出形如a-x=b或a÷x=b的方程時,要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,改列成形如x+b=a或bx=a的方程。這樣的處理方法倒是可以繼續(xù)回避上述的兩種特殊方程,可是,新的矛盾又出現(xiàn)了。

  我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,利用順向思維,降低思考的難度。這是方程方法的優(yōu)越性。然而,在刻意回避a-x=b或a÷x=b這樣的方程時,往往會出現(xiàn)和方程思想的基本理念相違背的現(xiàn)象。

  如“6枝鋼筆比4枝鉛筆貴12元。鋼筆每枝3元,鉛筆每枝多少元?”

  合理的做法應(yīng)是“設(shè)鉛筆每枝X元”,從順向思考,列出方程為“6×3-4X=12”。然而,按新教材的編排,學(xué)生無法解這樣的方程,只能轉(zhuǎn)列成“4X+12=6×3”。再如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷X=8,等到解方程時才發(fā)現(xiàn)利用天平的原理沒法繼續(xù),只好改列成8X=128。

  如此一來,學(xué)生怎么能充分體會方程順向思維的優(yōu)越性?

  如果說用舊教材的思路解方程對初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,如何是好?

  我只能把新舊教材兩種方法進(jìn)行互補(bǔ),告訴學(xué)生,遇到這類方程時,一種解決的辦法是按減法和除法各部分之間的關(guān)系進(jìn)行解答;另一種方法就是先按等式的性質(zhì),把方程的左右邊都加或乘一個x,然后把方程的左右兩邊交換一下位置,再按照a-x=b及a÷x=b的方法進(jìn)行解答。

解方程教學(xué)反思9

  本節(jié)課中學(xué)生學(xué)習(xí)等式的性質(zhì)是沒有多大的難度的,在運用等式的性質(zhì)進(jìn)行解方程時,難度也不是很大。課本安排了不少解方程的題目,學(xué)生都能一一解決。仔細(xì)觀察課本,其實會發(fā)現(xiàn)課本上在慢慢增加根據(jù)具體情境列出方程并解方程的題目。這是本單元的難點,這就需要讓學(xué)生根據(jù)題目中的等量關(guān)系來寫出方程。將等量關(guān)系寫出方程和學(xué)生之前根據(jù)等量關(guān)系解答是不同的。

  學(xué)生不太習(xí)慣,導(dǎo)致列的方程奇形怪狀。這里有必要深入探究方程的含義。根據(jù)上節(jié)課的學(xué)習(xí)學(xué)生知道:方程是從等式演變而來。含有字母的等式才叫作方程。換言之,方程其實是一種含有未知量的.等量關(guān)系的一種表達(dá)式。我們只需要將等量關(guān)系找到再將其表達(dá)成方程即可。學(xué)生出現(xiàn)問題的原因是以往大部分的解題經(jīng)驗所寫出的等量關(guān)系是從結(jié)果出發(fā)來寫的,一切為結(jié)果服務(wù)這樣一種逆向的思維過程。而現(xiàn)在寫出題目中的等量關(guān)系卻是從條件出發(fā)的一種正向思維。

  雖然在三年級時,我們學(xué)習(xí)了從條件出發(fā)和問題出發(fā)兩種不同的解題策略,但這離幫助學(xué)生形成這兩種思維還是遠(yuǎn)遠(yuǎn)不夠的。通過這樣的分析,那我們在引導(dǎo)孩子列方程時,就要從條件出發(fā),找等量關(guān)系來列方程了。先要幫助學(xué)生找出等量關(guān)系,在引導(dǎo)孩子根據(jù)等量關(guān)系表達(dá)出相應(yīng)的方程。這一點的學(xué)習(xí)時必須的。

解方程教學(xué)反思10

  本節(jié)課的學(xué)生學(xué)習(xí)的重難點是掌握較復(fù)雜方程的解法,會正確分析題目中的數(shù)量關(guān)系;學(xué)習(xí)目標(biāo)是進(jìn)一步掌握列方程解決問題的方法。這一小節(jié)內(nèi)容是在前面初步學(xué)會列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計算應(yīng)用題。例1若用算術(shù)方法解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。

  一、從學(xué)生喜聞樂見的`事物入手,降低問題的難度。

  解稍復(fù)雜的方程這部分內(nèi)容煩瑣乏味,解答例1這類應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準(zhǔn)題量的等量關(guān)系。我從學(xué)生喜歡的事物入手,引出數(shù)學(xué)問題,激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,又為學(xué)習(xí)新知識做了很多的鋪墊。

  二、放手讓學(xué)生思考、解答,選擇解題最佳方案。

  讓學(xué)生當(dāng)小老師,從問題中找出數(shù)量之間的關(guān)系,弄清解決問題的思路,展示講解自己的思考過程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過的方法來解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強(qiáng)化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進(jìn)了學(xué)生邏輯思維的發(fā)展。

  三、教會學(xué)生學(xué)習(xí)方法,比教會知識更重要。

  應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫,了解畫面信息,白色多少塊,黑色多少塊,白色比黑色少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問題的方法。

  讓學(xué)生成為學(xué)習(xí)的主人,參與到教學(xué)的全過程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會分析應(yīng)用題的解題方法,一句話,教會學(xué)生學(xué)習(xí)方法比教會知識更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過程的組織者、引導(dǎo)者。

解方程教學(xué)反思11

  今天對五年級上冊《解方程》進(jìn)行了教學(xué)。本課主要對教學(xué)例一和例二進(jìn)行了教學(xué)。

  一、本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時,給學(xué)生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學(xué)生的好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學(xué)會了本節(jié)課的知識。對于概念的理解也很扎實。

  二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進(jìn)行了“填空練習(xí)”,這四個練習(xí)題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對解方程掌握的.還不錯。

  三、本課主要對解方程進(jìn)行了解題練習(xí)。通過搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣和興趣!

  四、通過本課的作業(yè)檢測,有少量學(xué)生還是對本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

  五、學(xué)生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。

  總之,“興趣是學(xué)生最好的老師”,只要緊緊抓住這一點,教學(xué)質(zhì)量的提高指日可待。

解方程教學(xué)反思12

  《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個重要內(nèi)容,是“代數(shù)”教學(xué)的起始單元,對于滲透與發(fā)展學(xué)生的代數(shù)思想有著極其重要的作用。

  在開課時,通過復(fù)習(xí)哪些是方程,鞏固方程的含義,為后面教學(xué)作鋪墊。

  教學(xué)時,我讓學(xué)生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗的方法及書寫格式,并在后面的鞏固練習(xí)當(dāng)中加入口答檢驗,根據(jù)課本上的.“注意”強(qiáng)調(diào)說明雖然不要求每題都寫出檢驗,但都要口算進(jìn)行檢驗,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  在出示概念時,先讓學(xué)生自學(xué)了概念。自學(xué)完概念后,應(yīng)讓學(xué)生對兩概念講講自己的理解,自己勾畫出重點字,然后才是教師對概念重點的強(qiáng)調(diào),這樣更能區(qū)分兩概念不同的含義,對難點的突破也是一個很好的方法,可以讓學(xué)生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點在課上忽略了。

  在后面的反饋練習(xí)時,因前面例題的格式講的還不夠明確,所以練習(xí)時有點反復(fù),但在后面的練習(xí)中學(xué)生已完全掌握。鞏固練習(xí)的層次很好,由易到難,對學(xué)生的學(xué)習(xí)有突破,學(xué)生完成的正確率也很高。

  這節(jié)課整體來說我比較滿意,對于細(xì)節(jié)上的處理。在今后的教學(xué)中我會更加注意,使教學(xué)更加嚴(yán)謹(jǐn),也會更注意教材的研讀,爭取上一節(jié)完美的好課。

解方程教學(xué)反思13

  教材是利用等式的性質(zhì)來解方程。通過天平游戲,探索等式兩邊都加上(或減去)同一個數(shù),等式仍然成立,等式兩邊都乘一個數(shù)(或除以一個不為0的數(shù)),等式仍然成立的性質(zhì)。利用探索發(fā)現(xiàn)的等式的性質(zhì),解簡單的方程。如求出y+8=10中的未知數(shù)y。教材呈現(xiàn)了兩種思路。一種是學(xué)生直接想“?+8=10”,從而得出答案。另一種是利用等式的性質(zhì)解方程,即“方程的兩邊都減8”的方法。y+8-8=10-8,y=2。這樣解方程,剛開始時,為了學(xué)生理解方便,等號左邊的“+8-8”都要寫出來,會比較麻煩,也容易出錯!稊(shù)學(xué)課程標(biāo)準(zhǔn)》提倡算法多樣化的新理念,激發(fā)了我對解方程這課從不同的角度來進(jìn)行解讀和探討,因此,在學(xué)生理解了用等式的性質(zhì)解方程后,我又留給學(xué)生一定的.時間和空間,讓學(xué)生獨立思考,發(fā)揮各自的聰明才智,自主探索,找出不同的解題方法。

  學(xué)生經(jīng)歷了獨立思考,掌握的知識才更深刻、更透徹。久而久之,將促使學(xué)生養(yǎng)成獨立思考的習(xí)慣,培養(yǎng)了學(xué)生解決問題的能力。將學(xué)生的方法整理后,我又適時給學(xué)生提供了另外兩種解方程的方法,利用加、減、乘、除法各部分之間的關(guān)系來解方程和通過移項來解方程。

解方程教學(xué)反思14

  今天上了解方程(二)的內(nèi)容,感覺沒什么明顯的精彩地方。學(xué)生由于有了關(guān)于加減的等式的性質(zhì)的`了解,在通過例題中兩組方程的觀察,適當(dāng)提醒學(xué)生聯(lián)系前面學(xué)習(xí)的等式的性質(zhì),很自然的就能得出有關(guān)乘除的等式的性質(zhì)。

  只是在讓學(xué)生舉例的時候,沒有學(xué)生能想到同時除以0,結(jié)果是怎樣的。只能由自己向?qū)W生提出問題,簡單討論后,很快想到除法中除數(shù)不能為0,因而得出同時除以一個不為0的數(shù)的范圍。

  計算中有較多的問題,特別是很多學(xué)生對于小數(shù)的乘除法計算,有很多的錯誤,需要加強(qiáng)鞏固訓(xùn)練。

解方程教學(xué)反思15

  一、認(rèn)知基礎(chǔ)的“頑固性”

  心理學(xué)研究表明,當(dāng)人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實現(xiàn)由“過程”向“對象”的轉(zhuǎn)變。在一至四年級,學(xué)生都是根據(jù)四則運算各部分之間的關(guān)系來做計算的,它既是學(xué)生十分熟悉的運算規(guī)律,同時又為新知的學(xué)習(xí)提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運算,從這個角度去看,當(dāng)然也可以運用四則運算各部分之間的關(guān)系來做。而且,四則運算各部分之間的關(guān)系學(xué)生是先入為主、根深蒂固的,具有相對的“頑固性”,甚至在一定程度上會排斥新學(xué)的等式的性質(zhì),導(dǎo)致思維的“過早封閉”。因此,大多數(shù)學(xué)生這樣做也就可以理解了。

  以前教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的.關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,比較兩種思路:第一種方法是把未知數(shù)x優(yōu)先從背景中篩選出來,依據(jù)四則運算各部分之間的關(guān)系求出x的值;第二種方法用“結(jié)構(gòu)性觀點”去看待方程,著眼于其所表明的等量關(guān)系,體現(xiàn)了方程思想的本質(zhì),較好地解決了中小學(xué)關(guān)于方程解法的銜接問題!稊(shù)學(xué)課程標(biāo)準(zhǔn)》也明確要求學(xué)生能“理解等式的性質(zhì),會利用等式的性質(zhì)解簡單的方程”。那么,教材編排的價值是不容置疑的,即不能因為學(xué)生思維的輕車熟路,而忽視新知的教學(xué),忽視學(xué)生數(shù)學(xué)思想的進(jìn)一步提升。利用關(guān)系式這種方法解方程書寫較少,形式簡單,但教學(xué)時總碰到差生不理解關(guān)系式也記不住關(guān)系式,因此在解方程時因想不起關(guān)系式而不會解。這幾星期的教學(xué),我發(fā)現(xiàn)孩子們還是比較喜歡學(xué)的,學(xué)得也不錯,教材利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。教材又通過天平平衡原理過渡到等式的性質(zhì),從而利用等式的性質(zhì)教學(xué)解方程,使得解方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。雖然這樣教學(xué)學(xué)生有興趣,學(xué)得不錯,但也存在局限性,如a-x=b和a÷x=b,雖然教材沒有要求解這類方程,但試卷和相應(yīng)的練習(xí)有出現(xiàn),因此,有必要特別利用一些時間給學(xué)生補(bǔ)充講解這類方程解法。我發(fā)現(xiàn)用等式性質(zhì)教這類方程,比較麻煩,學(xué)生學(xué)起來有一定難度。

  二、兩種方法形式上的相似引發(fā)學(xué)生思維的惰性

  第一種方法書寫較少,形式簡單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學(xué)生形成思維惰性,就不會再去深究思路和觀念的不同,更不會創(chuàng)新解法。

  方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。這時,教師再適時介紹教材之所以這樣編排是為了中小學(xué)方程解法的銜接,使學(xué)生認(rèn)識到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。

【解方程教學(xué)反思】相關(guān)文章:

《解方程》教學(xué)反思03-28

《解方程》的教學(xué)反思09-17

解方程的教學(xué)反思02-26

解方程二教學(xué)反思12-29

數(shù)學(xué)解方程教學(xué)反思03-28

《解方程(二)》教學(xué)反思04-07

《解方程二》教學(xué)反思04-07

《解方程》教學(xué)反思 15篇04-07

《解方程》教學(xué)反思 (15篇)04-07