《加法的運算定律》教學反思
作為一名人民教師,我們要在課堂教學中快速成長,寫教學反思可以很好的把我們的教學記錄下來,教學反思應該怎么寫呢?以下是小編為大家收集的《加法的運算定律》教學反思,希望能夠幫助到大家。
《加法的運算定律》教學反思 篇1
對于加法的交換律學生很容易理解,但是在三個或三個以上加數(shù)相加時,他們分辨不清是該交換律還是結合律了。通過本節(jié)運用課,我發(fā)現(xiàn)孩子們對結合律掌握得不太好。尤其是在交換律和結合律同時使用時,他們有簡便的意識,卻對定律的辨析不夠清晰,缺少明晰的步驟。
如:在解決115+132+118+85這一題時,學生們都知道將115+85相加、另外兩個加數(shù)相加,但是他們?nèi)鄙龠@一交換和結合的步驟,而是直接在第一步就寫道200+250,還有部分同學直接在橫式上加括號。這一現(xiàn)象表明:學生們對于簡便的計算方法、加法的運算定律只是初步理解了,有簡便的意識,但練習還缺少規(guī)范性。
面對學生的錯誤,我又覺得有些矛盾:我們的.教學應該是為了讓學生會用,而不是將重心盯在讓學生辨別是交換律,還是結合律之上,我們都知道:會用才是目的。但是沒有規(guī)范的要求,他們僅將簡便的過程藏在心里,無疑顯露出他們對簡便運算與定律掌握不太牢固,運用時缺少足夠的信心,還未能理清晰計算過程,表現(xiàn)力尚為缺乏。所以學生們尚需走穩(wěn)每一步,看似簡單的內(nèi)容也得扎實的理解、熟練地運用。
《加法的運算定律》教學反思 篇2
《加法的運算定律》是一節(jié)概念課,由于四年級的學生認知和思維水平還比較低,抽象思維比較弱,對于他們來說規(guī)律的理解歷來是教學的難點。為了解決這個難點,我做了以下的努力:
1、在解決問題的過程中探尋規(guī)律。 英國教育家斯賓塞說過:“應引導學生進行探尋,自己去推論,對他們講的應該盡量少一些,而引導讓他們說出自己的發(fā)現(xiàn)應該盡量多一些! 在初步認識了28+17=17+28這樣的等式以后,我問:這樣的等式你還能舉些例子嗎?(學生爭先恐后地回答)。接著,我啟發(fā)道:這樣的等式有很多,你可以用你們喜歡的方式來表示。這一開放性問題的出現(xiàn),學生興趣盎然,課堂氣氛十分的活躍。經(jīng)過一番合作,學生的探究結果出來了,主要有這樣幾種:甲數(shù)+乙數(shù)=乙數(shù)+甲數(shù);△+○=○+△;a+b=b+a等等。我追問,如果一直這樣說下去,能說完嗎?(學生馬上回答我:不能。)這時我又讓他們用文字敘述這一規(guī)律。然后我小結:在很平常的一些四則運算中包含了一些規(guī)律性的東西,我們把這些規(guī)律叫做運算定律。你能給它起個名字嗎?然后指著板書,有學生說叫“加法交換律”。我追問道:為什么?(生答:因為這是兩個數(shù)相加,只交換位置)。 接著,讓學生用同樣的方法探究加法結合律。 整個過程教師都是教學的組織者和引導者,這樣的設計,緊密圍繞并運用好問題情境,師生之間積極互動,教師引導學生自己去發(fā)現(xiàn)規(guī)律,并學會用多種方法表示,讓學生有一種成就感。然后引導學生運用前面的研究方法開展研究,由扶到放,初步培養(yǎng)學生探索和解決問題的能力和語言的組織能力。
2、加法結合律的教學的看法 在加法結合律的教學過程中,教師在教學的時候延續(xù)了加法交換律的教學方式,通過實際問題的解決,得出等式;再給出兩組式子,通過計算得到也能用等于號連接;然后學生自己舉例。這樣的教學讓學生感受加法結合律的特點:加數(shù)位置沒有改變,運算順序改變了,和沒變。這樣的'教學顯得順暢,但是新意不夠,學生投入的激情不夠。所以我們還在探索、反思是否有更好的題材與方法來教學加法結合律。 對于小學生來說,運算定律的運用具有一定的靈活性,對于數(shù)學能力的要求較高,這是問題的一個方面。另一個方面,運算定律的運用也為培養(yǎng)和發(fā)展學生思維的靈活性提供了極好的機會。教學時,要注意讓學生探究、嘗試,讓學生交流、質(zhì)疑。相應地,老師也應發(fā)揮主導作用,當學生探究時,仔細觀察,認真揣摩學生的思路,酌情因勢利導,不失時機地給予適度啟發(fā),當學生交流時,耐心傾聽,洞悉學生的真實想法,加以必要的點撥,幫助學生講清自己的算法,讓其他同學也能明白。
《加法的運算定律》教學反思 篇3
加法運算定律是四年級下冊第三單元內(nèi)容,是在加法及驗算、四則混合運算的基礎上進行教學的。本節(jié)課的新知識在以前的數(shù)學學習中都有相應的認知基礎,學習本節(jié)知識又可以促進學生,更深入認識原來學過的知識和方法。在教學加法運算律的過程中,我依據(jù)學生的年齡特點,把握學生的認知規(guī)律,取得了較好的教學效果。下面談談我在課后的反思:
一、通過回顧驗算的方法來完成學生新舊知識的遷移,驗算就是交換;通過摘蘋果來暗示學生湊整可以使運算簡便,為學習結合律以及簡便運算打下基礎。結合成語故事朝三暮四導入新課,寓教于樂,可以更直觀的讓學生感受加法交換律,并加深學生的印象,并讓學生由特定的兩個加數(shù)延伸到任意兩個加數(shù),從而引出加法的交換律。
二、引導學生在已有的基礎上發(fā)現(xiàn)和歸納出運算定律。學生雖然在此前的學習中,對四則運算中的一些性質(zhì)和規(guī)律有感性的'認識,為新知的學習奠定了良好的基礎。但本節(jié)課畢竟是屬于理性的總結和概括,比較抽象,學生不易理解和掌握。因此,利用已掌握的知識,讓學生獨立解答,然后引導學生分析、比較不同的方法,并通過學生自己的舉例發(fā)現(xiàn)規(guī)律,概括出相應的運算律。
三、教學中,運算定律是讓學生通過觀察、比較和分析,找到實際問題不同解法之間的共同特點,初步感受運算規(guī)律。然后讓學生根據(jù)對運算定律的初步感知舉出更多的例子,進一步分析、比較,發(fā)現(xiàn)規(guī)律,并敘述所發(fā)現(xiàn)的規(guī)律。再讓學生用自己喜歡的方法表示規(guī)律,而不是像過去那樣,統(tǒng)一用字母來表示。這樣實現(xiàn)了運算律的抽象內(nèi)化,一方面有利于符號感的培養(yǎng),方便記憶;另一方面提高了知識的抽象概括程度,也為以后正式教學用字母表示數(shù)打下初步的基礎。同時,使學生體會到符號的簡潔性,從而發(fā)展了學生的符號感。
《加法的運算定律》教學反思 篇4
學生對于加法和乘法的交換律掌握較好,基本能夠靈活運用。然而對于加法、乘法結合律則運用不是很好,乘法分配律則更為糟糕。
歸結有以下幾個原因:
第一,學生現(xiàn)在只是能夠認識,弄明白這三個運算定律,還不明白這幾個運算定律的作用和意義。(除了少部分思維敏捷的學生之外)。
第二,學生能正確的分析算式,并正確的運用運算定律,對學生的已有基礎提出了不少的考驗,如 42 X 25 ,運用運算定律計算這個算式,很生很多是把 25 分為 20 和 5 ,這樣即使運用了乘法分配律,但較之把 42 分成 40 和 2 相比,有很大的出入。這主要是因為學生還沒有完全形成 25X4 得 100 這個重要的因素造成的。這里簡單的`描述為數(shù)學 “ 數(shù)感 ” 吧,還有 125 和 8 得 1000 一樣。
第三,有的學生甚至運用運算定律折騰了一番又回到了原來的算式。
綜上所述,解決辦法只能是多講多練,不斷的培養(yǎng)學生的數(shù)感,在不斷的重復練習過程中,體會應該如何運用運算定律,也就是如何做題。其次,等待講解了下節(jié)內(nèi)容簡便運算之后,我想學生會得到一個明確的回答,原來在計算的過程中運用運算定律可以使運算過程變得簡單,這樣,學生在計算的時候,自然就會去運用了,而且會十分的感興趣。
【《加法的運算定律》教學反思】相關文章:
《加法的運算定律》教學反思04-22
《加法運算定律》教學反思03-22
《加法運算定律》教學反思15篇04-16
《加法運算定律》教學設計(精選10篇)02-24
運算定律教學反思04-06
《運算定律》教學反思04-06
四年級數(shù)學《加法運算定律》教案03-09
《運算》教學反思04-06
加法教學反思12-31