- 讀《數(shù)學(xué)簡史》有感 推薦度:
- 相關(guān)推薦
讀《數(shù)學(xué)簡史》有感(通用28篇)
當閱讀了一本名著后,相信大家都有很多值得分享的東西,不妨坐下來好好寫寫讀后感吧。那么如何寫讀后感才能更有感染力呢?下面是小編整理的讀《數(shù)學(xué)簡史》有感,歡迎閱讀與收藏。
讀《數(shù)學(xué)簡史》有感 篇1
本周翻看了《數(shù)學(xué)簡史》,它擴展了我對數(shù)學(xué)的看法,了解了更多數(shù)學(xué)在人類文明發(fā)展過程中扮演的重要角色,和對文明的促進作用。
《數(shù)學(xué)簡史》蔡教授按照時間順序,講述不同地域文明的同時,先后探討了數(shù)學(xué)與各式各樣文明之間的關(guān)系。他敘述了埃及及巴比倫的數(shù)學(xué)來源于人們生存的.需要,希臘數(shù)學(xué)與哲學(xué)密切相關(guān),中國數(shù)學(xué)的活力來自歷法改革,印度數(shù)學(xué)的源泉始于宗教,波斯或阿拉伯的數(shù)學(xué)與天文學(xué)互不分離。文藝復(fù)興時期的藝術(shù)推動了幾何學(xué)發(fā)展,17世紀微積分的產(chǎn)生解決了科學(xué)和工業(yè)革命的一系列問題,18世紀法國大革命時期的數(shù)學(xué)涉及力學(xué)、軍事和工程技術(shù)。19世紀前半葉,數(shù)學(xué)和詩歌從古典進入現(xiàn)代,20世紀數(shù)學(xué)和人文學(xué)科的共性是抽象化。將現(xiàn)代數(shù)學(xué)的發(fā)展和現(xiàn)代文明進程不斷進行比較分析和闡釋,正是這本《數(shù)學(xué)簡史》與其他介紹數(shù)學(xué)歷史發(fā)展的書籍相比最顯著的特點,作者既著眼于數(shù)學(xué)的歷史,同時探討數(shù)學(xué)與人類文明的關(guān)系。
在閱讀過程中,我對具體的數(shù)學(xué)問題一帶而過,更關(guān)注的是作者對數(shù)學(xué)發(fā)展與其他人類文明發(fā)展相互影響和促進的介紹。通過閱讀,我改變了數(shù)學(xué)僅僅是繁難的計算,各種邏輯推理,難記的公式和符號等對數(shù)學(xué)局限性理解,我更系統(tǒng)了解了數(shù)學(xué)在人類文明進程中扮演的角色,清晰了數(shù)學(xué)來自人類對生活和世界的觀察,來源于對現(xiàn)實事物和問題的思考的具體情況。
讀《數(shù)學(xué)簡史》有感 篇2
在生活中,有許多的人都覺得數(shù)學(xué)很難。它有著很多很多繞來繞去的公式。有著許許多多連來連去的關(guān)系......這都讓人很是“頭疼”。但當我讀了《數(shù)學(xué)簡史》這本書后,我發(fā)現(xiàn),其實數(shù)學(xué)并沒有那么難懂。它也是從很簡單的概念開始,然后再慢慢地延伸開來的。
在很久很久以前,原始人便有了數(shù)的概念。在數(shù)量不多的食物或其他東西中間,增加幾個或減少幾個相同的東西,他們便能夠分辨出這個東西的多和少。慢慢地,當人類開始養(yǎng)羊或其他動物來維持生活,而不只是靠狩獵為生的時候,人們便懂得用新的方法來知道羊是不是一只沒少,全都回來了。
早晨,當羊出去吃草的時候,每出去一只,便撿起一顆石頭。到了晚上,羊兒們都吃完草,活動完之后,回到羊圈里時,每進一只,便丟掉一顆石頭。每當石頭都丟完了,便確信羊兒一只沒少,都回來了。早在有文字記載之前,獵人們便知道,當把兩只箭和三只箭放在一起時,便有了五只箭。后來就逐漸出現(xiàn)三種具有代表性的計數(shù)方式:石子計數(shù)、刻痕計數(shù)和結(jié)繩計數(shù)。
隨著人類的進步,人們需要更多的東西來生活和推進人類的進步。但如果還像以前那樣一個一個的數(shù),不免會覺得太麻煩、太費時間,這時,就需要擁有一種新的方法來計算。那就是十進制。
我們現(xiàn)在通常用的是十進制。也就是逢十進一,借一當十。但在古代,人們有時卻用的.是十六進制,如一斤就等于十六兩,半斤就等于八兩。當然,除了十六進制和十進制,還有其他的進制。比如五進制、十二進制、二進制等。二進制的應(yīng)用則促進了電子計算機的發(fā)明。
你看,數(shù)學(xué)其實并不難,它只是從一個簡單的數(shù)學(xué)概念開始,慢慢地發(fā)展,到后面的幾何學(xué)......
讀《數(shù)學(xué)簡史》有感 篇3
在許多人看來,數(shù)學(xué)就是枯燥無味的代名詞,甚至,我在教數(shù)學(xué)之前也是秉持著這樣的認知:數(shù)學(xué)意味著復(fù)雜的計算和沒完沒了的證明,以及如天書般的公式和符號。接觸數(shù)學(xué)學(xué)科之后,這樣的感覺才慢慢淡去,也體會到數(shù)學(xué)看起來離我們的生活很遠,但實際上卻是與文化、藝術(shù)、生活息息相關(guān)。而讀完《數(shù)學(xué)簡史》之后,就更加肯定了我對數(shù)學(xué)的堅持!
《數(shù)學(xué)簡史》是一部另類的”數(shù)學(xué)簡史”,跨越了不同的地域和種族,依次探討了數(shù)學(xué)與不同文明之間的關(guān)系,并各有側(cè)重。關(guān)于古代,包括四大文明古國和希臘、阿拉伯,《數(shù)學(xué)簡史》著力于發(fā)現(xiàn)有現(xiàn)代意義的`亮點;至于近代文明,則考察了文藝復(fù)興的藝術(shù)與幾何學(xué)、工業(yè)革命與微積分、法國大革命與應(yīng)用數(shù)學(xué)的關(guān)系。對現(xiàn)代數(shù)學(xué)與現(xiàn)代藝術(shù)進行闡述和比較,也是《數(shù)學(xué)簡史》的一大亮點。讀了這本書,讓我對數(shù)學(xué)學(xué)習(xí)有了新的認識和感悟,也讓我更深層次的了解到數(shù)學(xué)的魅力和偉大,以及對前人的崇敬。
著名數(shù)學(xué)家陳省身曾說過:“了解歷史的變化是了解這門科學(xué)的一個步驟!比魏我婚T學(xué)問都不是從來就有的,都是在人們的實踐中逐漸產(chǎn)生的,都有其形成、發(fā)展、成熟和完善的階段。數(shù)學(xué)的歷史源遠流長,當代數(shù)學(xué),遍及世界各地,對于數(shù)學(xué)的貢獻地位與影響,都有中肯的評價。
數(shù)學(xué)與我們的生活實際息息相關(guān),數(shù)學(xué)與科學(xué)、人文的各個分支一樣,都是隨著人類社會的進步而發(fā)展的,是人類大腦進化和智力發(fā)展進程的反映。而且,數(shù)學(xué)更是其他學(xué)科的基礎(chǔ),人類歷史的重大發(fā)展時期都與數(shù)學(xué)發(fā)展呈現(xiàn)出某種相通的特性。現(xiàn)代生活中高科技產(chǎn)品的問世離不開數(shù)學(xué)的發(fā)展,數(shù)學(xué)的歷史源遠流長,數(shù)學(xué)來自人類對生活和世界的觀察,以及對現(xiàn)實事物和問題的思考。數(shù)學(xué)的觸角幾乎遍及人類社會的每一個角落,以及歷史和生命的每一個瞬時。
讀《數(shù)學(xué)簡史》有感 篇4
作為一名初中數(shù)學(xué)老師,我覺得這本書不僅可以提升自己,還讓我思考如何將數(shù)學(xué)史滲透到平時的教學(xué)中。我認為這樣做非常有必要:
1.數(shù)學(xué)史可以提高學(xué)生的學(xué)習(xí)興趣
初中生普遍對數(shù)學(xué)的學(xué)習(xí)興趣不大,這極大地影響了學(xué)習(xí)的效果。但這并不是因為數(shù)學(xué)本身枯燥、無趣,而是它被我們的教學(xué)所忽視了。如果在數(shù)學(xué)教育中適當結(jié)合數(shù)學(xué)史的有關(guān)知識,這樣有利于提高學(xué)生對學(xué)習(xí)數(shù)學(xué)的興趣。
2.數(shù)學(xué)史可以弘揚
中國數(shù)學(xué)有著悠久的歷史,14世紀以前一直是世界上數(shù)學(xué)最為發(fā)達的國家,由于各種復(fù)雜的原因,16世紀以后中國變?yōu)閿?shù)學(xué)落后國。經(jīng)歷了漫長而艱難的發(fā)展歷程才漸漸匯入現(xiàn)代數(shù)學(xué)的潮流。數(shù)學(xué)史可以使學(xué)生了解中國古代數(shù)學(xué)的輝煌成就,了解中國近代數(shù)學(xué)落后的原因,中國現(xiàn)代數(shù)學(xué)研究的現(xiàn)狀以及與發(fā)達國家數(shù)學(xué)的差距,以激發(fā)學(xué)生的愛國熱情,振興民族科學(xué)。
3.數(shù)學(xué)史可以培養(yǎng)學(xué)生的創(chuàng)新意識
通過對數(shù)學(xué)史的學(xué)習(xí)讓學(xué)生明白數(shù)學(xué)的發(fā)展是許多數(shù)學(xué)家心血和汗水的結(jié)晶,從而培養(yǎng)學(xué)生認真學(xué)習(xí)數(shù)學(xué)的習(xí)慣、正確的思維方式和頑強的拼搏精神,激發(fā)求知欲,培養(yǎng)創(chuàng)新精神。
4.數(shù)學(xué)史可以提高學(xué)生的美學(xué)修養(yǎng)
數(shù)學(xué)是美的,無數(shù)數(shù)學(xué)家都為這種數(shù)學(xué)的美所折服。英國數(shù)學(xué)家、哲學(xué)家羅素說過:”數(shù)學(xué)不僅擁有真理,而且還擁有至高無上的美——一種冷峻嚴肅的美,就像一尊雕塑……,這種美沒有繪畫或音樂那樣華麗的裝飾,它可以純潔到崇高的程度,能夠達到嚴格的只有最偉大的藝術(shù)才能顯示的完美境界”.數(shù)學(xué)史的學(xué)習(xí)可以引導(dǎo)學(xué)生領(lǐng)悟數(shù)學(xué)的'美,很多著名的數(shù)學(xué)定理、原理都閃現(xiàn)著美學(xué)的光輝。
數(shù)學(xué)源于生活,高于生活,最終也將服務(wù)生活,運用于生活。在大多數(shù)人看來,數(shù)學(xué)是一門枯燥無味的學(xué)科,因而很多人談“數(shù)”色變,從某種程度上說,這也許是由于我們的數(shù)學(xué)所教的往往是一些僵化的、一成不變的數(shù)學(xué)內(nèi)容,如果在數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來,這樣也許可以激發(fā)學(xué)生的學(xué)習(xí)興趣,也有助于學(xué)生對數(shù)學(xué)認識的深化,讓更多的學(xué)生懂得數(shù)學(xué)。
總之,作為一名初中教師,數(shù)學(xué)史的學(xué)習(xí)對本就枯燥的數(shù)學(xué)課來說,可以激發(fā)學(xué)生興趣,啟發(fā)學(xué)生的思維,增強學(xué)生的愛國情操,活躍課堂氣氛,增進師生間的共同了解,也讓學(xué)生了解數(shù)學(xué),了解數(shù)學(xué)的美……所以我們把數(shù)學(xué)史的一些輝煌成就和一些感人事例,以一種精神力量融入到我們的教學(xué)中,會使我們的數(shù)學(xué)課變得非常豐富。
讀《數(shù)學(xué)簡史》有感 篇5
數(shù)學(xué)經(jīng)歷了歷史的積淀,給我們的世界展現(xiàn)出來一個不一樣的畫卷,我看了一本書《數(shù)學(xué)簡史》,書里講的是數(shù)學(xué)的發(fā)展歷史,并且對國內(nèi)外的數(shù)學(xué)都進行了介紹。我想在時間的慢慢長河里,這是多么傳奇的歷史!那么接下來我?guī)Т蠹易哌M我所見到的數(shù)學(xué)世界。數(shù)學(xué)是有自己獨特魅力的科學(xué),《數(shù)學(xué)簡史》一共有十四個大的章節(jié),每一個章節(jié)都凝聚了數(shù)學(xué)的“理”性思維脈絡(luò),讓我們清楚的領(lǐng)略數(shù)的價值和意義所在。首先談?wù)剶?shù)學(xué)早期的萌芽,事物的發(fā)展總是一步一步慢慢向前的,數(shù)學(xué)當然也不例外。
早期的數(shù)學(xué)主要是介紹數(shù)與形概念的起源,美索不達米亞、古埃及和中國等早期數(shù)學(xué)的萌芽,不同的文明,數(shù)學(xué)的產(chǎn)生與演變也有很多區(qū)別和聯(lián)系,數(shù)的概念產(chǎn)生于原始人的生活和生產(chǎn),中國早期用結(jié)繩、刻劃等方式計數(shù),并產(chǎn)生抽象過程從“結(jié)繩”到“書契”;美索不達米亞則是由楔形文字對數(shù)學(xué)內(nèi)容進行了記載,一是“表格課本”也就是古代的“應(yīng)用數(shù)學(xué)”,二是“問題課本”也稱“理論數(shù)學(xué)”;古埃及數(shù)學(xué)知識的象征是至今蔚為奇觀的金字塔,金字塔大多呈正四棱錐形,據(jù)對最大的胡夫金字塔的測算,發(fā)現(xiàn)它基地是正方形,各邊誤差僅僅是1.6厘米。這些早期的數(shù)學(xué)象征物的出現(xiàn),給數(shù)學(xué)帶來了一個基本的框架,讓我們更好的了解的數(shù)學(xué)的發(fā)展。
其次,我們不得不說的便是古希臘數(shù)學(xué),數(shù)學(xué)的發(fā)展和我們歷史發(fā)展的是有很大相似之處的,它們都會經(jīng)歷興盛和衰落,古希臘數(shù)學(xué)從雅典開始到亞歷山大時期達到了全盛,但是物盛極必衰,在亞歷山大后期就逐漸衰落,在此期間,數(shù)學(xué)史出現(xiàn)了幾位十分重要的人物,論證數(shù)學(xué)開創(chuàng)者泰勒斯,他是古希臘“七賢之首”,據(jù)記載泰勒斯是第一個將埃及人的幾何學(xué)帶回到希臘。據(jù)說他本人發(fā)現(xiàn)了許多幾何命題,并創(chuàng)立了對幾何命題的邏輯推理,因此泰勒斯是論證數(shù)學(xué)發(fā)端第一位代表人物。有關(guān)幾何的研究還出現(xiàn)了不少學(xué)派,畢達哥拉斯學(xué)派、埃利亞學(xué)派、柏拉圖學(xué)派和亞里士多德學(xué)派等,這些學(xué)派活躍了數(shù)學(xué)世界。到了全盛時期出現(xiàn)了歐幾里得《幾何原本》“,數(shù)學(xué)之神”阿基米德,阿波羅尼奧斯的《圓錐曲線論》。后來在宗教勢力的'壓迫下,數(shù)學(xué)逐漸走向衰落。最后,我想講一下中國數(shù)學(xué),在大家的記憶中,中國的數(shù)學(xué)好像與算盤關(guān)系緊密,這樣說來確實如此,算盤是運用的現(xiàn)實中的數(shù)學(xué),并且珠算在我國有很久的歷史了。我國與數(shù)學(xué)有關(guān)的著作有劉徽的《九章算術(shù)》,書如其名,本書共分九章,第一章“方田”,第二章“粟米”九章“勾股”,第三章“衰分”,第四章“少廣”第五章“商功”第六章“均輸”第七章“盈不足”,第八章“方程”,第九章“勾股”,每一章都和實際問題緊密相關(guān),像我們證明了數(shù)學(xué)源于生活。
還有祖沖之的《綴術(shù)》現(xiàn)已失傳,最后是秦九韶的《數(shù)書九章》,從一到九寫了:大衍、天時、田域、測望、賦役、錢谷、營建、軍旅和市易。同是九章,《數(shù)書九章》與《九章算術(shù)》相比,在表述形式:問–答–術(shù)的基礎(chǔ)上多了草–圖,對問題的解答更具有示范性和實用性。隨時間的推移,出現(xiàn)了李冶的“天元術(shù)”,朱世杰的“四元術(shù)”,構(gòu)成了具有中國獨特風(fēng)格的代數(shù)學(xué),到了現(xiàn)代。我國還有一些對數(shù)學(xué)孜孜不倦的研究者,如華羅庚和他的《堆壘素數(shù)論》,“數(shù)學(xué)科學(xué)獎”獲得者陳省身和許寶騄,至此,中國的數(shù)學(xué)發(fā)展完全與國際接軌,完成了現(xiàn)代化的漫長歷程。以前總覺得數(shù)學(xué)很難學(xué),抽象的概念使我對她避之不及,但看過她的成長歷程后,我發(fā)現(xiàn)她和大部分小孩子一樣,有著調(diào)皮可愛的成長史,她不是一蹴而就的,而是在經(jīng)歷無數(shù)數(shù)學(xué)家的探索和證明中成長起來的,我對她的認識使我對她有了很大的改觀,我想在我們年少無知的時候總感覺做什么都是難的,但經(jīng)歷了多了,我們會變得成熟穩(wěn)重,時間給了我們經(jīng)驗,給了我們成長,讓我們學(xué)會獨立思考。
讀《數(shù)學(xué)簡史》有感 篇6
我閱讀《數(shù)學(xué)簡史》,完全在一種休閑的、輕松的,也是舒坦的、愉快的狀況之中。碰到繁復(fù)的數(shù)學(xué)公式、定理及其證明等,我一目十行、囫圇吞棗,一如我讀大部頭的小說,往往常規(guī)地跳過向來不太在意的大段心理描寫一樣。讀《數(shù)學(xué)簡史》,我卻十分留意它行云流水的敘述、縝密思維的演繹、多姿多彩的話語、宏大緊密的結(jié)構(gòu)。有時,我按圖索驥,對著目錄,找準其中的某一篇章,仔細揣摩;有時,我隨意打開其中的某頁,順勢而讀,總能做到樂在其中。我不求透徹的理解、不求系統(tǒng)的把握,數(shù)學(xué)簡史》讓我與牛頓、高斯這些巨人親密接觸,也讓我循著代數(shù)、幾何、算術(shù)、三角學(xué)發(fā)展的脈絡(luò),靠近(還不能說走進)數(shù)學(xué)。在我來說,只是追求閱讀視野的擴大、知識背景的重構(gòu)。
數(shù)學(xué)是人類創(chuàng)造活動的過程,而不單純是一種形式化的結(jié)果;運用辨證唯物主義的觀點看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過程中,不但表現(xiàn)出矛盾運動的特點,而且它們與社會、政治、經(jīng)濟以及一般人類的文化有著密切的聯(lián)系。
它的內(nèi)容涉及到從上古時代到19世紀初的這段時期。為了跟蹤過去2021年當中主要數(shù)學(xué)概念的發(fā)展,作者非常重視第一手資料的搜集與運用。在介紹重要數(shù)學(xué)家的工作時,大量從他們的原著中引用材料。在不列顛博物館、英國皇家學(xué)會和劍橋三一學(xué)院的幫助下,引用了比較多的史料,使人們對原始的情況獲得了深刻的印象。同時,作者還注意到數(shù)學(xué)知識的繼承性和積累性,并不把重大的發(fā)現(xiàn)和發(fā)明完全歸功于某一個人。例如對歐幾里得和牛頓這樣一些主要的流派,作者到說明他們的成就的淵源,從而勾畫出數(shù)學(xué)科學(xué)本身發(fā)展的規(guī)律。斯科特博士依靠他對數(shù)學(xué)史的`駕馭自如的能力寫出了這本富有激勵性的好書。
數(shù)學(xué)的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學(xué)與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這使數(shù)學(xué)成為人類文化中最基礎(chǔ)的學(xué)科。對此恩格斯指出:“數(shù)學(xué)在一門科學(xué)中的應(yīng)用程度,標志著這門科學(xué)的成熟程度!痹诂F(xiàn)代社會中,數(shù)學(xué)正在對科學(xué)和社會的發(fā)展提供著不可或缺的理論和技術(shù)支持。
數(shù)學(xué)史不僅僅是單純的數(shù)學(xué)成就的編年記錄。數(shù)學(xué)的發(fā)展決不是一帆風(fēng)順的,在跟讀的情況下是充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至?xí)媾R困難和戰(zhàn)盛危機的斗爭記錄。無理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學(xué)創(chuàng)造的真實過程,而這種真實的過程是在教科書里以定理到定理的形式被包裝起來的。對這種創(chuàng)造過程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強信心。
讀《數(shù)學(xué)簡史》有感 篇7
數(shù)學(xué)是什么?數(shù)學(xué)經(jīng)歷了什么?《數(shù)學(xué)簡史》把數(shù)學(xué)幾千年的發(fā)展?jié)饪s在一起,幫助我們整體感知數(shù)學(xué)發(fā)展的同時也讓我們更深層次的了解到數(shù)學(xué)的魅力和偉大,以及對前人的尊敬。
數(shù)學(xué)史的意義是什么?數(shù)學(xué)史就是研究數(shù)學(xué)產(chǎn)生、發(fā)展進程及其規(guī)律的一門科學(xué)史,數(shù)學(xué)史是學(xué)習(xí)數(shù)學(xué)、認識數(shù)學(xué)的工具,可以幫助我們弄清數(shù)學(xué)的概念、數(shù)學(xué)思想方法的發(fā)展過程,使我們對數(shù)學(xué)概貌有整體的把握和了解。數(shù)學(xué)源于人類的生存和發(fā)展,“人類在蒙昧?xí)r代就已具有識別事物多寡的能力,從這種原始的數(shù)覺到抽象的數(shù)的概念的形成,是一個緩慢的,漸進的過程。”人類為了便于生活生產(chǎn)的需要,開始以手指頭計數(shù),手指數(shù)不夠了,開始用石頭計數(shù),刻痕計數(shù)。又經(jīng)過幾萬年的發(fā)展,隨著幾種文明的誕生與發(fā)展,計數(shù)系統(tǒng)在各種文明中都有了表示方式,古埃及的象形數(shù)學(xué),巴比倫楔形數(shù)字,中國甲骨文數(shù)字,中國籌算數(shù)碼等等。因此研究數(shù)學(xué)史可以幫助我們探索人類數(shù)學(xué)文明的發(fā)展,了解數(shù)學(xué)發(fā)展過程中數(shù)學(xué)的連續(xù)性和不斷完整性。簡言之,追溯數(shù)學(xué)的過去,了解數(shù)學(xué)的現(xiàn)在,遇見數(shù)學(xué)的未來。
基于數(shù)學(xué)史研究的任務(wù)與原則,作為一線數(shù)學(xué)教師應(yīng)該如何定位?荷蘭數(shù)學(xué)教育家弗萊登塔爾說:“沒有一種數(shù)學(xué)觀念像當初被發(fā)現(xiàn)那樣得以表述。一旦問題獲得解決,一種技巧得到了發(fā)展和應(yīng)用,就會轉(zhuǎn)向解的程序側(cè)面,……火熱的發(fā)現(xiàn)變?yōu)楸涞?美麗。”這里弗氏批評那種過于注重邏輯性,沒有絲毫歷史感的教材“把火熱的發(fā)現(xiàn)變成冰冷的美麗”。我國數(shù)學(xué)教育家張奠宙說:“數(shù)學(xué)原本是火熱的思考,但是一旦發(fā)表出來,形成文字,寫入教材,就變成了冰冷的美麗。鮮活的思想被淹沒在形式演繹的海洋里,數(shù)學(xué)史的任務(wù)就是提供各種數(shù)學(xué)歷史背景,讓學(xué)生理解數(shù)學(xué)的原始思考及其來龍去脈,獲得真正的理解。”但是現(xiàn)實生活中我們大多數(shù)老師的數(shù)學(xué)教學(xué)的“傳道授業(yè)解惑”大多數(shù)情況下都在向?qū)W生傳遞著生硬的道以應(yīng)付各種的困惑,學(xué)生是被動的,數(shù)學(xué)的文化之美被硬生生的切斷與冷落了。隨著高考改革的發(fā)展,對學(xué)生數(shù)學(xué)文化閱讀理解下的數(shù)學(xué)抽象、概括、推理等能力的要求越來越高,例如2021年高考數(shù)學(xué)全國卷的第4題關(guān)于“斷臂維納斯”背景下看學(xué)生能否能夠運用數(shù)學(xué)語言,清晰準確的表達數(shù)學(xué)建模的過程和結(jié)果,題目前面的數(shù)學(xué)歷史文化卻讓很多學(xué)生望而生畏。平時數(shù)學(xué)老師提了無數(shù)次的建模思想變得空洞無力!
作為數(shù)學(xué)教師,我們平時應(yīng)該做些什么呢?”我們強調(diào)“學(xué)生中心論”、“學(xué)習(xí)過程論”、“課程生活論”,趙豐平總校長也說:“按照教育規(guī)律辦學(xué),是應(yīng)對高考最好的辦法!”因此首先應(yīng)該讓學(xué)生整體感知數(shù)學(xué)是什么,數(shù)學(xué)經(jīng)歷了什么,一起研究通讀數(shù)學(xué)史,今天的數(shù)學(xué)知識僅僅是冰山一角!數(shù)學(xué)歷史發(fā)展和文化傳承的研究會更容易幫助學(xué)生走進數(shù)學(xué),接受數(shù)學(xué)家們身上正面的影響與激勵,激發(fā)學(xué)生無窮的學(xué)習(xí)興趣,站在文化與社會的角度看數(shù)學(xué)、學(xué)數(shù)學(xué)更利于學(xué)生形成自己對數(shù)學(xué)思想方法的理解,提高自己的數(shù)學(xué)文化素養(yǎng)。重視數(shù)學(xué)史和數(shù)學(xué)文化在數(shù)學(xué)教學(xué)中的作用,當今已成為一種國際現(xiàn)象。數(shù)學(xué)文化也應(yīng)該融合在我們平時的教學(xué)當中,例如初中學(xué)段的勾股定理是自古至今最富活力的數(shù)學(xué)產(chǎn)物,在學(xué)習(xí)勾股定理時我們不妨借助強大先進的271BAY下的大單元整體學(xué)程設(shè)計為學(xué)生提供豐富的素材以供學(xué)生來充分走進勾股定理的世界,讓學(xué)生結(jié)合老師提供的情境、任務(wù)及路線圖自主去研究勾股定理的過去、現(xiàn)在和未來,讓學(xué)生用自己對勾股定理的理解去解決有關(guān)直角三角形的問題,期間形成的自己對數(shù)形結(jié)合思想的理解遠勝過老師的任何說教!任何一個數(shù)學(xué)公理的過去、現(xiàn)在、未來都有一個強大、豐富的文化和歷史作為支撐,而這些數(shù)學(xué)研究都是強有力的教育課程資源,這對學(xué)生的生命成長的影響是浸潤式的、長久的、更是深刻的!
數(shù)學(xué)是一門歷史悠久、分支繁多、抽象的學(xué)科,數(shù)學(xué)的世界更是豐富多彩充滿文化魅力與人文挑戰(zhàn)的!“路漫漫其修遠兮,吾將上下而求索”,讓我們和學(xué)生一起在《數(shù)學(xué)簡史》中學(xué)習(xí)、碰撞、成長,近距離品鑒數(shù)學(xué)之美!
讀《數(shù)學(xué)簡史》有感 篇8
拿到這本書已經(jīng)兩個月了,說實話,我不太愿意翻開它,雖說是普及版,但過于深奧的內(nèi)容,作為一位科學(xué)專職的我來說,實在有點慚愧。
本書的作者是史蒂芬·霍金,我們知道霍金他一生的經(jīng)歷和他的科學(xué)貢獻同樣是一個奇跡,他20歲時即被診斷出患有漸凍癥,醫(yī)生甚至預(yù)言他當時還只有兩年的壽命,然而他卻創(chuàng)造了奇跡。(據(jù)了解“漸凍癥”是一組運動神經(jīng)元疾病的俗稱,主要類型是肌萎縮性脊髓側(cè)索硬化癥,因為特征性表現(xiàn)是肌肉逐漸萎縮和無力,身體如同被逐漸凍住一樣,故俗稱“漸凍癥”。由于目前沒有特效藥,而與癌癥、艾滋病等疾病并列為世界五大頑癥。)
正如霍金所說,這是一本不僅讓青少年,而且讓所有人都能理解的書。他刪去了《時間簡史》中過于高深的部分,重寫了相對論和彎曲空間這兩章(它們分別討論狹義相對論和廣義相對論),但是由于自己認知水平有限,不得不一字一句地慢慢理解,可仍然還是有不少地方弄不明白。
我們都知道這是一本普及科學(xué)知識為目的的科學(xué)著作,看了這本書后,這本書教會我們?nèi)绾握_的看待這個世界和生活中形形色色的事情。我們可以用科學(xué)的`眼光看待事物,而不是遇到難懂的事物就盲目的相信迷信之類的邪說。我們要把霍金的這種精神用到自己工作學(xué)習(xí)上,作為一名不到三年的新教師,更加要不斷地充實自己的知識。在平時的教書工作中,我要制定一個合理的學(xué)習(xí)方法,因為一個周全的嚴密的學(xué)習(xí)計劃對于工作時間的安排是十分合理的,能達到事半功倍的效果,不是有句諺語,“凡事預(yù)則立,不預(yù)則廢”。而好的學(xué)習(xí)方法,將有助你的聽課、自學(xué),以及上課。更重要的是,如果我能養(yǎng)成這樣一種好的習(xí)慣,對于我將來的發(fā)展有非常大的幫助。
霍金,這樣一位終年坐在輪椅上的人,依靠一個電腦發(fā)聲合成器,以正常人十分之一的速度與人“交談”,但他卻同其他科學(xué)家一樣,用自己的經(jīng)歷告訴他人:執(zhí)著的探索精神是生命的最大動力。在我心中,除了這本著作所帶來的洗滌與震撼外,剩下的只是對這顆偉大心靈的崇拜與敬仰!
讀《數(shù)學(xué)簡史》有感 篇9
一氣呵成,讀完《數(shù)學(xué)簡史》,心底不由得涌上一股沖動,那是一種什么感覺呢?對了,是感動,是一個對數(shù)學(xué)有著宗教般虔誠的仰望者的心動,是一個對歷史有著無盡探索欲望的追求者的向往。
我不知道人們?yōu)槭裁撮L久以來稱數(shù)學(xué)為“科學(xué)的女皇”,也許是女皇有著一種讓人無法親近的神秘感,但是她的面容又是如此的讓人們向往和陶醉。女皇陛下,揭開你神秘的面紗,讓我目睹你絕世的風(fēng)姿,體會你無盡的風(fēng)韻,感動你帶給我所有的感動吧!
仰望者,唯巨星也!數(shù)學(xué)的漫漫長河中,涌出過無數(shù)的璀璨巨星,從畢達哥拉斯、歐幾里德得、祖沖之到牛頓、歐拉、高斯、龐加萊、希爾伯特……當他們一個個從我的心底流過時,有一種興奮,更有一種感動,他們才是時代真正的弄潮兒。
歐幾里得的《幾何原本》開創(chuàng)了數(shù)學(xué)最早的典范,是漫漫長河中的第一座豐碑,公理化的思想由此而生;
祖沖之關(guān)于圓周率的密率(355/113)給了國人足夠驕傲的資本,也把“割圓術(shù)”發(fā)揮到了極致;
牛頓和萊布尼茲聯(lián)手創(chuàng)造了微積分(盡管他們之間有這樣那樣的矛盾),開創(chuàng)了數(shù)學(xué)的分析時代,微積分也被譽為“人類精神的最高勝利”(恩格斯語);歷史就是這樣被書寫,歷史就是這樣被引領(lǐng),歷史就是這樣被創(chuàng)造。
一個多世紀前的1900年,德國數(shù)學(xué)家希爾伯特正在做一個題為《數(shù)學(xué)問題》的演講,提出了23個需要被重視和解決的數(shù)學(xué)問題。正是這23個數(shù)學(xué)問題,引領(lǐng)了整個二十世紀數(shù)學(xué)發(fā)展的主流。
1994年,當二十世紀即將落幕的時候,年輕的英國數(shù)學(xué)家維爾斯創(chuàng)造了一個新的歷史——費馬大定理獲證,從而結(jié)束了這場長達300年之久的競逐,給二十世紀的數(shù)學(xué)演奏了一首美妙的終曲。
就這樣一次次的被感動,不僅為成功者喜悅感動,也為不被承認的成功者默默感動。
天才往往是孤獨的,先知者注定得不到世人的理解。
許多天才的數(shù)學(xué)家,英年早逝,終生難以得志。
橢圓函數(shù)論的創(chuàng)始人阿貝爾一生貧病交加,大學(xué)畢業(yè)長期找不到工作,在他僅僅27年的短暫生命中,卻留下許多創(chuàng)造性的貢獻。但當人們認識到他的才華,柏林大學(xué)終身教授的聘書下達時,他已經(jīng)離開人世兩年了。
同維爾斯一樣,伽羅瓦同樣攻克了歷經(jīng)三百年的難題——方程根式解的存在問題;但不同的是,維爾斯成為數(shù)學(xué)的終身成就獎——沃爾夫獎最年輕的得主,那年他44歲,而伽羅瓦死時不到21歲,他的研究只能藏身于廢紙簍中。
集合論和無限概念的創(chuàng)始人康托爾,由于他的理論不被世人理解而廣受排擠,最后郁郁而終。
天才的思想往往是超前的,在我們這些凡夫俗子眼中,的確很難理解他們。但就是在這樣的環(huán)境下,他們依然默默的堅守著自己的信念,執(zhí)著著自己的理想。除了感動,我還能有什么呢?
在那漫漫長河中,璀璨巨星令我欣然神往,驚濤駭浪更令我心潮澎湃。三次數(shù)學(xué)危機掀起的巨浪,真正體現(xiàn)了數(shù)學(xué)長河般雄壯的氣勢,海洋般偉岸的身姿。
每一次危機巨浪之后,納百川,聚眾流,數(shù)學(xué)以更加廣闊的`胸懷滾滾向前,盡管這其中有很多悲壯的成分。
第一次數(shù)學(xué)危機,無理數(shù)成為數(shù)學(xué)大家庭中的一員,推理和證明戰(zhàn)勝了直覺和經(jīng)驗,一片廣闊的天地出現(xiàn)在眼前。但是最早發(fā)現(xiàn)根號2的希帕蘇斯被拋進了大海。
第二次數(shù)學(xué)危機,數(shù)學(xué)分析被建立在實數(shù)理論的嚴格基礎(chǔ)之上,數(shù)學(xué)分析才真正成為數(shù)學(xué)發(fā)展的主流。但牛頓曾在英國大主教貝克萊的攻擊前,顯得蒼白無力。
第三次數(shù)學(xué)危機,“羅素悖論”使數(shù)學(xué)的確定性第一次受到了挑戰(zhàn),徹底動搖了整個數(shù)學(xué)的基礎(chǔ),也給了數(shù)學(xué)更為廣闊的發(fā)展空間。但歌德爾的不完全性定理卻使希爾伯特雄心建立完善數(shù)學(xué)形式化體系、解決數(shù)學(xué)基礎(chǔ)的工作完全破滅。
滾滾巨流,勢無可擋,數(shù)學(xué)的長河竟擁有如此的悲壯和激情,那種“山窮水盡疑無路,柳暗花明又一村”的成長能不被感動嗎?
讀《數(shù)學(xué)簡史》有感 篇10
又這樣過了一個月了,盡管也就那么的幾節(jié)數(shù)學(xué)史的課,可是,依然讓我聽得津津入味。認識數(shù)學(xué)歷史,重溫數(shù)學(xué)的發(fā)展道路。
數(shù)學(xué),似乎是一個枯燥的學(xué)科,但是,卻是我們生活當中,最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟學(xué)的基礎(chǔ),是市場里的公平秤,是我們量化自己的必要工具。數(shù)學(xué),就是這么的一個“工具箱”,前人用萬分的努力汗水,把這個工具弄得更為人性化,更能讓我們好好地使用!稊(shù)學(xué)史概論》這本書,真的讓我對數(shù)學(xué)有了更深的認識。
下面,我說說從《數(shù)學(xué)史概論》這本書,我又學(xué)到了什么。
古希臘第一位偉大的數(shù)學(xué)家泰勒斯,曾利用太陽影子成功地計算出了金字塔的高度,實際上利用的就是相似三角形的性質(zhì)?窗桑脭(shù)學(xué)簡單的思維,就能把本不可能完成的計算,就這樣輕松解決了。在泰勒斯之后,以畢達哥拉斯為首的一批學(xué)者,對數(shù)學(xué)做出了極為重要的貢獻。發(fā)現(xiàn)“勾股定理”,是他們最出色的成就之一,因此直到現(xiàn)在,西方人仍然把勾股定理稱為“畢達哥拉斯定理”。正是這個定理,導(dǎo)致了無理數(shù)的'發(fā)現(xiàn)。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具體的得來過程呢,從這條定理的證明,到后來導(dǎo)致了無理數(shù)的發(fā)現(xiàn),我也相信未來,也一定有不少的理論在這個基礎(chǔ)上,不斷地被發(fā)現(xiàn),被證明。在畢達哥拉斯之后,就是偉大的古希臘哲學(xué)家亞里士多德,他是人類科學(xué)發(fā)展史上最博學(xué)的人物之一,正是他所創(chuàng)立的邏輯學(xué),對古希臘數(shù)學(xué)的發(fā)展產(chǎn)生了深遠的影響。到了歐幾里德時代,幾何學(xué)已經(jīng)成為一門相當完整的學(xué)科了。歐幾里德的名著《幾何原本》,是世界數(shù)學(xué)史上最偉大的著作之一。時至今日,我們在初中階段學(xué)習(xí)的平面幾何,大部分知識依然來源于古老的《幾何原本》。在此之前,我只知道,亞里士多德在哲學(xué)方面為世界做出了很大的貢獻,可是也不可否認,在幾何方面他也對數(shù)學(xué)界做出的貢獻不可磨滅。
研究數(shù)學(xué)發(fā)展歷史的學(xué)科,是數(shù)學(xué)的一個分支,也是自然科學(xué)史研究下屬的一個重要分支。數(shù)學(xué)史研究的任務(wù)在于,弄清數(shù)學(xué)發(fā)展過程中的基本史實,再現(xiàn)其本來面貌,同時通過這些歷史現(xiàn)象對數(shù)學(xué)成就、理論體系與發(fā)展模式作出科學(xué)、合理的解釋、說明與評價,進而探究數(shù)學(xué)科學(xué)發(fā)展的規(guī)律與文化本質(zhì)。作為數(shù)學(xué)史研究的基該方法與手段,常有歷史考證、數(shù)理分析、比較研究等方法。可以說,在數(shù)學(xué)的漫長進化過程中,幾乎沒有發(fā)生過徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學(xué)這座高樓添磚加瓦,它才能越立越高,越來越扎實,我也為可以這樣學(xué)習(xí)和認識數(shù)學(xué)而感到滿足!
讀《數(shù)學(xué)簡史》有感 篇11
《數(shù)學(xué)史》把數(shù)學(xué)幾千年的發(fā)展?jié)饪s為這本編年史中。從希臘人到哥德爾,數(shù)學(xué)一直輝煌燦爛,名人輩出,觀念的潮漲潮落到處清晰可見。而且,盡管追蹤的是歐洲數(shù)學(xué)的發(fā)展,但并沒有忽視中國文明、印度文明和阿拉伯文明的貢獻,是一部經(jīng)典的關(guān)于數(shù)學(xué)及創(chuàng)造這門學(xué)科的數(shù)學(xué)家們的單卷本歷史著作。讀了這本書,讓我對數(shù)學(xué)學(xué)習(xí)有了新的認識和感悟,也讓我更深層次的了解到數(shù)學(xué)的魅力和偉大,以及對前人的崇敬。
數(shù)學(xué)源于人類的生活與發(fā)展。書中說,“人類在蒙昧?xí)r代就已具有識別事物多寡的能力,從這種原始的‘數(shù)覺’到抽象的‘數(shù)’概念的形成,是一個緩慢的,漸進的過程!比祟悶榱吮阌谏钌a(chǎn)的需要,開始以手指頭計數(shù),手指數(shù)不夠了,開始用石頭計數(shù),結(jié)繩計數(shù),刻痕計數(shù)。又經(jīng)過幾萬年的發(fā)展,隨著幾種文明的誕生與發(fā)展,記數(shù)系統(tǒng)在各種文明中都有了表示方式。古埃及的`象形數(shù)字,巴比倫楔形數(shù)字,中國甲骨文數(shù)字,中國籌算數(shù)碼等等。
但是,為什么時至今日我們最習(xí)慣和擅長使用的是十進制計數(shù)的方式呢,難道就是因為老師們一代一代這樣教出來的嗎?很多人可能就是這樣認為的,或者根本并未思考過。書里寫到:“十進制在今天的普遍使用,只不過是解剖學(xué)上一次偶然事件的結(jié)果而已:我們中的大多數(shù)人,生來就有10個手指、10個腳趾。”經(jīng)歷過扳著手指頭數(shù)數(shù)的過程,可能十進制早已在我們的心中留下了牢固的烙印。這就是一個知識的自然形成。
通過對書中一些知識的閱讀與思考,可以感覺到許多知識并不是那些先驅(qū)者憑空亂想出來的,是根據(jù)某種需要而研究出來的規(guī)律,而且是一些自然存在的規(guī)律,我們今天所學(xué)的知識正是這些已經(jīng)總結(jié)出來的規(guī)律。“坐標系”這個詞,對很多人來說可能并不陌生,即使他的數(shù)學(xué)知識已經(jīng)“還給老師”很多年了,他也許還知道什么是“經(jīng)度緯度”。為什么會出現(xiàn)這樣的現(xiàn)象呢,也許是因為后者在生活中出現(xiàn)的更多一些,但其實兩者的實質(zhì)都是一樣的。一個小故事說:“笛卡爾小時候在一次晨思時看見天花板上有一只蒼蠅在爬,他的頭腦中閃現(xiàn)出智慧的火花,如果知道蒼蠅和相臨兩個墻壁的距離之間的關(guān)系,就能描述它在天花板上的位置與運動路線!边@個故事可能是編造的,但最終形成了我們今天所知的“笛卡爾坐標系”。這樣的思想廣泛的應(yīng)用在天文,地理,物理等許多的學(xué)科中。
我們在學(xué)習(xí)知識的時候是否思考過這個知識是由何而來的呢?是否注意到了在知識體系這張大網(wǎng)中,每個知識在什么位置上呢?難道我們真的可以單純的認為每個知識都是孤立的考試對象嗎?
數(shù)學(xué)源于生活,高于生活,最終也將服務(wù)生活,運用于生活。在一般人看來,數(shù)學(xué)是一門枯燥無味的學(xué)科,因而很多人視其為畏途,從某種程度上說,這也許是由于我們的數(shù)學(xué)所教的往往是一些僵化的、一成不變的數(shù)學(xué)內(nèi)容,如果在數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來,這樣也許可以激發(fā)學(xué)生的學(xué)習(xí)興趣,也有助于學(xué)生對數(shù)學(xué)認識的深化,讓更多的學(xué)生懂得數(shù)學(xué)。
讀《數(shù)學(xué)簡史》有感 篇12
今年的寒假出奇的漫長,在這漫長的寒假里,我讀了一本我不怎么喜歡的書——《數(shù)學(xué)史》,為什么不喜歡呢?是因為我很多不懂,但是讀著讀著我就喜歡上了,《數(shù)學(xué)史》記錄著人類數(shù)學(xué)歷史發(fā)展的進程,讀了它,我有一點膚淺的體會。
體會一:數(shù)學(xué)源自于與生活的需要與發(fā)展。
書中寫到:人類在很久之前就已經(jīng)具有識辨多寡的能力,從這種原始的數(shù)學(xué)到抽象的“數(shù)”概念的形成,是一個緩慢漸進的`過程。人們?yōu)榱朔奖阌谏畋阌辛怂阈g(shù),于是開始用手指頭去“計算”,手指頭計數(shù)不夠就開始用石頭,結(jié)繩,刻痕去計計數(shù)。例如:古埃及的象形數(shù)字;巴比倫的楔形數(shù)字;中國的甲骨文數(shù)字;希臘的阿提卡數(shù)字;中國籌算術(shù)碼等等。雖然每種數(shù)字的誕生都有不同的背景與用途,以及運算法則,但都同樣在人類歷史發(fā)展和數(shù)學(xué)發(fā)展起著至關(guān)重要的作用,極大地推動了人類文明的前進。
體會二:河谷文明和早期數(shù)學(xué)在歷史的長河一樣璀璨奪目。
歷史學(xué)家往往把興起于埃及,美索不達米亞,中國和印度等地域的古文明稱為“河谷文明”,早期的數(shù)學(xué),就是在尼羅河,底格里斯河與幼發(fā)拉底河,黃河與長江,印度河與恒河等河谷地帶首先發(fā)展起來的。埃及人留下來的兩部草紙書——萊茵徳紙草書和莫斯科紙草書,還有經(jīng)歷幾千年不倒的神秘金字塔,給后人詮釋了古埃及人在代數(shù)幾何的偉大成就,也給后人留下了輝煌的文化歷史,而美索不達米亞在代數(shù)計算方面更是達到令人不可思議的程度。三次方程,畢達哥拉斯都是它創(chuàng)造的不朽的歷史,在數(shù)學(xué)史上的地位是至關(guān)重要的。
古人云:讀史使人明智。讀了《數(shù)學(xué)史》讓我明白:數(shù)學(xué)源于生活,高于生活,最終服務(wù)于生活,運用于生活。
讀《數(shù)學(xué)簡史》有感 篇13
最近一段時間,我花兩天時間認真閱讀了《這才是好讀的數(shù)學(xué)史》這本書。這使得我對數(shù)學(xué)的發(fā)展有了更多的了解。
通過這本書的內(nèi)容,我了解到了數(shù)學(xué)是如何發(fā)展起來的,和一些為數(shù)學(xué)發(fā)展做出過巨大貢獻的集體或個人。從這本書里,我知道了,數(shù)學(xué)是從古代中東地區(qū)發(fā)展起來的,在經(jīng)過一段時間的發(fā)展后,之后便在古希臘,印度,之后再是伊斯蘭帝國成長和發(fā)揚光大,后來再在歐洲得到進一步的發(fā)展。這本書還告訴了我,數(shù)學(xué)不是男性的天下,因為書里還提及了一些十分杰出的女性數(shù)學(xué)家,她們也為數(shù)學(xué)的發(fā)展做出了巨大的貢獻。
數(shù)學(xué)史是一個龐大的內(nèi)容,可以說,自從文明開始,就有了人去研究和在生活之中使用數(shù)學(xué),數(shù)學(xué)為人們的生活帶去了巨大的便利。這本書在做表述數(shù)學(xué)史這一龐大的內(nèi)容時,還將其盡量簡化,簡化成了幾個板塊并且還是用十分生動的有趣的語言,但這樣也有缺點,就是有很多其他的事情沒有介紹到,同時對于中國的數(shù)學(xué),作者可能是沒能找到太多相關(guān)的資料,所以并沒有介紹太多。
《這才是好讀的數(shù)學(xué)史》這本書先是說了數(shù)學(xué)在各個古代文明中的發(fā)展,之后又講了其中世界上有名的.數(shù)學(xué)科目,并分別介紹了在這些方面出名的數(shù)學(xué)家,在后面又講到了現(xiàn)代數(shù)學(xué),通過這兒我知道了,我們現(xiàn)在所學(xué)的數(shù)學(xué)是非常古老的,幾千年前的東西了,我們甚至連中世紀的水平都沒達到,也由此可以看出數(shù)學(xué)的發(fā)展之快。數(shù)學(xué)在一次次的個性與進步當中,變得越來越深奧,難以理解。
從千年前的1+1=2再到函數(shù),再到微積分,再到現(xiàn)代數(shù)學(xué),數(shù)學(xué)也開始運用在更多地方,像航天,工程等,所以說,只有學(xué)好數(shù)學(xué)才能為社會做出更大的貢獻。
讀《數(shù)學(xué)簡史》有感 篇14
《數(shù)學(xué)史》這本書從希臘數(shù)學(xué)講到了現(xiàn)代數(shù)學(xué)。我所感興趣的部分有幾個,一是關(guān)于以前的技術(shù)系統(tǒng)。我不知搭配人們是從何時開始計數(shù)的,但是當時的以十的冪為基數(shù)的計數(shù)系統(tǒng)以及六十進制的`分數(shù)表示雖然不及現(xiàn)在的阿拉伯數(shù)字方便,但仍值得我們稱贊。第二是希臘數(shù)學(xué)。雖然希臘人并不太在意應(yīng)用數(shù)學(xué),但是我覺得他們所研究的幾何也是需要來源于生活的,是要從生活中去尋找,發(fā)現(xiàn)和提取的。也就是那個時候,歐幾里得編出了影響深遠的《幾何原本》。我們現(xiàn)在所學(xué)的幾何就與《幾何原本》有著很大的關(guān)系,所以說這么看來的話,到現(xiàn)在我們也不過只是學(xué)到了數(shù)學(xué)的皮毛而已,許多的知識還是希臘數(shù)學(xué)。且其中的平行公設(shè)到了十九世紀仍然被研究。所以用影響深遠來描述《幾何原本》,應(yīng)該不為過吧。同時,他們也對Π有了一些認識。由此可見,他們不僅從生活中提煉出了數(shù)學(xué)思想,而且還在上面添加了許多華麗的色彩,使得整個數(shù)學(xué)系統(tǒng)更加龐大,也讓數(shù)學(xué)漸漸成為我們不敢仰望的存在。最后一個令我感興趣的部分是代數(shù)。步入初中學(xué)習(xí)后,我們開始接觸代數(shù),但讀了《數(shù)學(xué)史》我才知道代數(shù)竟然是十六、十七世紀所產(chǎn)生的,過了幾個世紀,代數(shù)又成為了讓人頭疼的部分。并且在那個時候,他們就已經(jīng)開始研究一些復(fù)雜的代數(shù)問題了。
《數(shù)學(xué)史》向我們完整地展示了數(shù)學(xué)各個枝節(jié)細致的發(fā)展過程,這種過程被描寫的也還算有趣(至少讓我看得下去),雖然專業(yè)術(shù)語很多,閱讀有障礙,但我不得不說,這確實是好讀的數(shù)學(xué)史。
讀《數(shù)學(xué)簡史》有感 篇15
《數(shù)學(xué)史》一直是我最想讀的一本書教學(xué)中我越來越覺得作為一個數(shù)學(xué)教師,數(shù)學(xué)史對我們有多少重要!于是我拜讀了數(shù)學(xué)史。
我知道了,數(shù)學(xué)的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學(xué)與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這便使數(shù)學(xué)成為人類文化中最基礎(chǔ)的工具。而在現(xiàn)代社會中,數(shù)學(xué)正在對科學(xué)和社會的發(fā)展提供著不可或缺的理論和技術(shù)支持。
我知道了,第一次數(shù)學(xué)危機——你知道根號2嗎?你知道平時的一塊錢兩塊糖之中是怎么迸濺出無理數(shù)的火花的嗎?正是他——希帕蘇斯,是他首先發(fā)現(xiàn)了無理數(shù),是他開始質(zhì)疑藏在有理數(shù)的背后的神奇數(shù)字。從那時起無理數(shù)成為數(shù)字大家庭中的一員,推理和證明戰(zhàn)勝了直覺和經(jīng)驗,一片廣闊的天地出現(xiàn)在眼前。但是,希帕蘇斯卻被無情地拋進了大海。不過,歷史卻絕對不會忘記他,縱然海浪早已淹沒了他的身軀,我們今天還保留著他的名字——希帕蘇斯!
第二次數(shù)學(xué)危機——知道嗎?站在巨人的肩膀上的牛頓,曾經(jīng)站在英國大主教貝克萊的前面,用顫抖的嗓音述說者自己的觀點,沒有人相信他,沒有人支持他,即便他的觀點著實是今天的正解!數(shù)學(xué)分析被建立在實數(shù)理論的嚴格基礎(chǔ)之上,數(shù)學(xué)分析才真正成為數(shù)學(xué)發(fā)展的主流。
第三次數(shù)學(xué)危機——我們聽過這個名字——羅素,但是緊跟在他的身后的兩個字卻是那么刺眼——“悖論”!傲_素悖論”的出現(xiàn)使數(shù)學(xué)的'確定性第一次受到了挑戰(zhàn),徹底動搖了整個數(shù)學(xué)的基礎(chǔ)。與此同時,歌德爾的不完全性定理卻使希爾伯特雄心建立完善數(shù)學(xué)形式化體系、解決數(shù)學(xué)基礎(chǔ)的工作完全破滅。數(shù)學(xué)似乎是再也站不起來了。是的,羅素的觀點似乎真的很有道理,危機產(chǎn)生后,數(shù)學(xué)家紛紛提出自己的解決方案,比如ZF公理系統(tǒng)。這一問題的解決到現(xiàn)在還在進行中。羅素悖論的根源在于集合論里沒有對集合的限制,以至于讓羅素能構(gòu)造一切集合的集合這樣“過大”的集合,對集合的構(gòu)造的限制至今仍然是數(shù)學(xué)界里一個巨大的難題!不過,我們不能蔑視“羅素悖論”,換種說法,不正是這個“悖論”引起了我們的思考嗎?不正是這個“悖論”使我們更有創(chuàng)造精神嗎?
我知道了,我們中國在數(shù)學(xué)上的成就也絕對不能忽視,從《九章算術(shù)》到《周髀算經(jīng)》,中國傳統(tǒng)數(shù)學(xué)源遠流長,有其自身特有的思想體系與發(fā)展途徑。它持續(xù)不斷,長期發(fā)達,成就輝煌,呈現(xiàn)出鮮明的“東方數(shù)學(xué)”色彩,對于世界數(shù)學(xué)發(fā)展的歷史進程有著深遠的影響。
讀《數(shù)學(xué)簡史》有感 篇16
我閱讀《數(shù)學(xué)史通論》,完全在一種休閑的、輕松的,也是舒坦的、愉快的狀況之中。碰到繁復(fù)的數(shù)學(xué)公式、定理及其證明等,我一目十行、囫圇吞棗,一如我讀大部頭的小說,往往常規(guī)地跳過向來不太在意的大段心理描寫一樣。讀《數(shù)學(xué)史通論》,我卻十分留意它行云流水的敘述、縝密思維的演繹、多姿多彩的話語、宏大緊密的結(jié)構(gòu)。有時,我按圖索驥,對著目錄,找準其中的某一篇章,仔細揣摩;有時,我隨意打開其中的某頁,順勢而讀,總能做到樂在其中。我不求透徹的理解、不求系統(tǒng)的把握,《數(shù)學(xué)史通論》讓我與牛頓、高斯這些巨人親密接觸,也讓我循著代數(shù)、幾何、算術(shù)、三角學(xué)發(fā)展的脈絡(luò),靠近(還不能說走進)數(shù)學(xué)。在我來說,只是追求閱讀視野的擴大、知識背景的重構(gòu)。
數(shù)學(xué)是人類創(chuàng)造活動的過程,而不單純是一種形式化的結(jié)果;運用辨證唯物主義的`觀點看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過程中,不但表現(xiàn)出矛盾運動的特點,而且它們與社會、政治、經(jīng)濟以及一般人類的文化有著密切的聯(lián)系。
它的內(nèi)容涉及到從上古時代到19世紀初的這段時期。為了跟蹤過去2000年當中主要數(shù)學(xué)概念的發(fā)展,作者非常重視第一手資料的搜集與運用。在介紹重要數(shù)學(xué)家的工作時,大量從他們的原著中引用材料。在不列顛博物館、英國皇家學(xué)會和劍橋三一學(xué)院的幫助下,引用了比較多的史料,使人們對原始的情況獲得了深刻的印象。同時,作者還注意到數(shù)學(xué)知識的繼承性和積累性,并不把重大的發(fā)現(xiàn)和發(fā)明完全歸功于某一個人。例如對歐幾里得和牛頓這樣一些主要的流派,作者到說明他們的成就的淵源,從而勾畫出數(shù)學(xué)科學(xué)本身發(fā)展的規(guī)律。斯科特博士依靠他對數(shù)學(xué)史的駕馭自如的能力寫出了這本富有激勵性的好書。
數(shù)學(xué)的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學(xué)與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這使數(shù)學(xué)成為人類文化中最基礎(chǔ)的學(xué)科。對此恩格斯指出:“數(shù)學(xué)在一門科學(xué)中
讀《數(shù)學(xué)簡史》有感 篇17
從小到大,在學(xué)習(xí)數(shù)學(xué)的過程中,接觸大量的數(shù)學(xué)題,對數(shù)學(xué)的歷史很少提及!稊(shù)學(xué)史》,一本專門研究數(shù)學(xué)的歷史,娓娓道來,滿足了我的好奇,把數(shù)學(xué)的發(fā)展過程展示出來。
本書于1958年出版,作者J.F.斯科特。書中主要闡述西方數(shù)學(xué)的發(fā)展歷史,但也專門用一章講述印度和中國的數(shù)學(xué)發(fā)展。沿著時間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過程。
上古時代的古埃及人和古巴比倫人在平時的生產(chǎn)勞作中運用到了數(shù)學(xué)知識。
古希臘人繼承這些數(shù)學(xué)知識并不斷拓展,成為數(shù)學(xué)史上一個“黃金時代”,涌現(xiàn)出畢達哥拉斯、柏拉圖、亞里士多德、歐幾里得、阿基米德,丟番圖等一系列耳熟能詳?shù)拿帧?/p>
在黑暗的中世紀,數(shù)學(xué)發(fā)展處于停滯狀態(tài),而斐波那契的出現(xiàn)把數(shù)學(xué)帶上復(fù)興。
文藝復(fù)興,數(shù)學(xué)又進入一個蓬勃發(fā)展的時期,對解三次方程和四次方程、三角學(xué)、數(shù)學(xué)符號、記數(shù)方法的研究沒有停步!+”、“-”、“=”、“”、“>”的符號是在那個時候出現(xiàn)的,同時出了一名數(shù)學(xué)家韋達——韋達定理的發(fā)明者。
7世紀,解析幾何出現(xiàn)、力學(xué)興起、小數(shù)和對數(shù)發(fā)明。這些都為微積分的發(fā)明奠定了基礎(chǔ)。牛頓和萊布尼茲兩位大師的.研究,在數(shù)學(xué)領(lǐng)域開辟了一個新紀元。
8世紀,為完善微積分中的概念,各路數(shù)學(xué)家在數(shù)學(xué)分析方法上有所發(fā)展。歐拉、拉格朗日,柯西等大師采用極限、級數(shù)等方法讓微積分更加嚴謹。同時,非歐幾何的理論開始萌芽。
縱觀全書,數(shù)學(xué)的發(fā)展是由一群人搭建起來的。前人的工作為后人的研究奠定了基礎(chǔ)。后人在前人的工作上不斷突破和創(chuàng)新。另外,數(shù)學(xué)中也有哲理,天地有大美而不言。當看到歐拉時,想到歐拉公式;看到韋達,想到韋達定理。公式很簡潔,但把規(guī)律說清楚了。數(shù)學(xué)愛好者可以試著解里面的數(shù)學(xué)題,看看古人在當時是如何研究的,有的方法很笨拙,有的方法很巧妙。讀完后,發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué),會解幾道數(shù)學(xué)題是不夠的,還要學(xué)會去培養(yǎng)自己的思維。畢竟數(shù)學(xué)家的思維也會受到歷史的局限。比如負數(shù)開根號,當時被人看來是無法接受,后來發(fā)明了虛數(shù)。
歷史是在不斷地前進,數(shù)學(xué)的發(fā)展亦然。想知道數(shù)學(xué)和歷史的跨界,那就來看《數(shù)學(xué)史》。
讀《數(shù)學(xué)簡史》有感 篇18
在這個寒假,我閱讀了一本名叫《這才是好讀的數(shù)學(xué)史》這本書叫這個名字確實是名副其實,他為人們介紹了最全面的數(shù)學(xué)史,以及名人與數(shù)學(xué)之前的故事,還有各國數(shù)學(xué)的起源到發(fā)展。
數(shù)學(xué)的形狀和名稱以及關(guān)于計數(shù)和算數(shù)運算的基本概念似乎是人類的遺產(chǎn)。早在公元前500年,數(shù)學(xué)就出現(xiàn)了,隨著社會的`不斷發(fā)展,就需要一些方法來統(tǒng)計拖款欠稅的數(shù)額等等,這時候數(shù)學(xué)就開始出現(xiàn)了。那時候的古埃及人用墨水在紙草上書寫這種,這種材料是不易保存數(shù)千年的。大多數(shù)?脊偶彝诰虻氖^都是在神廟和陵墓附近,而不是在古城遺址。因此我們只能通過少量的資料來考察古埃及的數(shù)學(xué)發(fā)展史。
許多古代文化發(fā)展了各式各樣的數(shù)學(xué),但是希臘數(shù)學(xué)家們是獨一無二的,他們將邏輯推理和證明擺在數(shù)學(xué)的中心位置。希臘數(shù)學(xué)傳統(tǒng)的保持和發(fā)展一直延續(xù)到公元400年。我們了解的希臘數(shù)學(xué)最早是歐幾里得的《幾何原本》,可我們也只了解這一本著名的書。希臘數(shù)學(xué)的優(yōu)勢便是幾何,盡管希臘人也研究了整數(shù),天文學(xué),力學(xué)。但是根據(jù)古希臘幾何學(xué)史學(xué)家的說法,最早的希臘數(shù)學(xué)家是600年前的泰勒斯,畢達哥拉斯都要比他晚一個世紀,當記錄歷史時,泰勒斯和畢達哥拉斯都成為了遠古時期的神話級人物。
又在20世紀初,希伯爾特提出了一系列重要問題,又在21世紀開始在克萊數(shù)學(xué)學(xué)院的帶領(lǐng)下,選擇7個數(shù)學(xué)課題,并且提供的100萬美金來解決每一個問題數(shù)論則是另一個發(fā)展方向。正如我們的數(shù)學(xué)概念小史中解釋的,費馬的最后定理在1994年得到了證明。
在今天的數(shù)學(xué)中涉及了許多不同的領(lǐng)域,所以我們要好好學(xué)習(xí)數(shù)學(xué),并且多看有關(guān)數(shù)學(xué)的書,才能使我們的數(shù)學(xué)成績突飛猛進。
讀《數(shù)學(xué)簡史》有感 篇19
在任何起點上要想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問題,然后才能賦予答案的意義 ——引言
數(shù)學(xué), 似乎是一個枯燥的學(xué)科,但卻是我們生活里最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟學(xué)的基礎(chǔ),是市場里的公平稱,是我們量化自己的必要工具...是的,數(shù)學(xué)是一個“工具箱”!那么,前人是怎么樣把這個工具弄得更為人性化,更能讓我們好好地使用呢?看完《這才是好讀的數(shù)學(xué)史》后,我知道了許多。
《這才是好讀的數(shù)學(xué)史》介紹了數(shù)學(xué)從有記載的源頭,到最初的算數(shù),再到代數(shù)、幾何等領(lǐng)域不斷地深入化發(fā)展的歷史過程。本書按照歷史發(fā)展順序,先后介紹了數(shù)學(xué)的開端,古希臘的數(shù)學(xué),古印度的數(shù)學(xué),古阿拉伯的數(shù)學(xué),中世紀歐洲的數(shù)學(xué),十五和十六世紀的代數(shù)學(xué)。
在人類對于數(shù)學(xué)漫漫求索之路上,誕生了許多古代文化,而這些古代文化發(fā)展了各種各樣的`數(shù)學(xué) 。其中,古代伊拉克的歷史跨越了數(shù)千年,它包括了許多文明,如蘇美爾,巴比倫,亞述,波斯和希臘文明。所偶有這些文明都了解并使用數(shù)學(xué),但有很多變化。在這兒不得不提到的是古希臘數(shù)學(xué)。在此之前,各個文明運用數(shù)學(xué)僅僅是用來協(xié)助、解決一些簡單的生活問題,有時不就此滿足的人們也會有簡單的探索,但希臘的數(shù)學(xué)家們是獨一無二的,他們將邏輯推理和證明作為數(shù)學(xué)中心,也是正因如此,他們永遠改變了運用數(shù)學(xué)的意義。
數(shù)學(xué)源于生活卻高于生活。如今的數(shù)學(xué)在生活中被廣泛的運用,一起熱愛數(shù)學(xué)吧!向為數(shù)學(xué)做出巨大奉獻的前人們致敬!
讀《數(shù)學(xué)簡史》有感 篇20
在這個寒假里,我接觸到了《數(shù)學(xué)史》這本書。這本書介紹了數(shù)學(xué)從有記載的源頭向最初的算術(shù)、幾何、統(tǒng)計學(xué)、運籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進程,以及如今數(shù)學(xué)的發(fā)展。
這本書分為兩篇,上篇是數(shù)學(xué)簡史,下篇是數(shù)學(xué)概念小史。這本書中令我印象最深的數(shù)學(xué)家就是費馬。皮埃爾·德·費馬是屬于文藝復(fù)興時期傳統(tǒng)的人,他處于重新發(fā)掘古希臘知識的中心,但是他卻問了一個希臘人沒有想到過要問的問題—費馬大定理。這個問題困惑了世人358年,直到1994年的9月19日安德魯·懷爾斯才宣布解開這個問題。這個問題起源于古希臘時代,它聯(lián)系著畢達哥拉斯所建立的數(shù)學(xué)的基礎(chǔ)和現(xiàn)代數(shù)學(xué)中各種最復(fù)雜的思想。費馬大定理的故事和數(shù)學(xué)的歷史有著密不可分的聯(lián)系,它對于“是什么推動著數(shù)學(xué)發(fā)展”,或者是“是什么激勵著數(shù)學(xué)家們”提供了一個獨特的見解。費馬大定理是一個充滿勇氣、欺詐、狡猾和悲慘的英雄傳奇的核心,牽涉到數(shù)學(xué)王國中所有最偉大的英雄。巴里·梅休爾評論說,在某種意義上每個人都在研究費馬問題,但只是零星地而沒有把它作為目標,因為這個證明需要把現(xiàn)代數(shù)學(xué)的整個力量聚集起來才能完全解答。安德魯所做的就是再一次把似乎是相隔很遠的.一些數(shù)學(xué)領(lǐng)域結(jié)合在一起。因而,他的工作似乎證明了自費馬問題提出以來數(shù)學(xué)所經(jīng)歷的多元化過程是合理的。
讀了數(shù)學(xué)史后,我認為數(shù)學(xué)在我們的生活中扮演著不可或缺的角色,只有學(xué)好數(shù)學(xué),學(xué)會應(yīng)用數(shù)學(xué),我們才能在這個正在向數(shù)字化發(fā)展的社會穩(wěn)穩(wěn)地站住腳跟。
讀《數(shù)學(xué)簡史》有感 篇21
數(shù)學(xué)也許對我們來說僅僅是一門枯燥且乏味的科目,但在學(xué)習(xí)數(shù)學(xué)這門科目的時候,誰又曾想過數(shù)學(xué)是從何而來的,數(shù)學(xué)的發(fā)展歷程又是怎么樣的……
本來我并不知道這些,或者用詞恰當一些,數(shù)學(xué)對于我來說是熟悉卻陌生的:說熟悉,從最初的小學(xué)一年級接觸數(shù)學(xué),可以說到現(xiàn)在時間已經(jīng)蠻久了;說陌生,從最初接觸數(shù)學(xué)以來,我并不了解關(guān)于數(shù)學(xué)的發(fā)展經(jīng)過以及數(shù)學(xué)的由來。
《數(shù)學(xué)史》這本書概括了數(shù)學(xué)的出現(xiàn)以及發(fā)展,將數(shù)學(xué)發(fā)展的幾千年的歷史寫以書的形式,讓人們更加容易理解。同時,《數(shù)學(xué)史》也在講述發(fā)展史的同時,將數(shù)學(xué)概念本身講解的十分清楚。
從希臘人到哥德爾,在數(shù)學(xué)的發(fā)展中一直人才輩出。數(shù)學(xué)的發(fā)展雖追蹤歐洲數(shù)學(xué)的發(fā)展,但也不失中國,印度和阿拉伯文明!稊(shù)學(xué)史》將世界上的數(shù)學(xué)文明都總結(jié)在了書中,十分經(jīng)典。
在書中,我了解到:在早期人類社會中,數(shù)學(xué)史抽象的`科學(xué),恩格斯指出:“數(shù)學(xué)在一門科學(xué)中的應(yīng)用程度,標志著這門科學(xué)的成熟程度!钡浆F(xiàn)如今,數(shù)學(xué)對科學(xué)和社會提供著不可缺的技術(shù)與理論支持。
數(shù)學(xué)也是一門累積性強的學(xué)科,重大的數(shù)學(xué)理論總是在繼承和發(fā)展原有理論的基礎(chǔ)上建立起來的,他們不僅不會推翻原有理論,反而總是包容它們,在原有的基礎(chǔ)上再做更多的鉆研。
讀了這本書,讓我對數(shù)學(xué)有了新的認識和感悟,也讓我從更深層次了解到了數(shù)學(xué)的魅力與偉大以及對前輩的深深崇敬!稊(shù)學(xué)史》這本書是一本十分難得的記錄數(shù)學(xué)發(fā)展史的書,它不僅條理清晰且易讀,實為優(yōu)秀的數(shù)學(xué)史教材。
讀《數(shù)學(xué)簡史》有感 篇22
在我閱讀數(shù)學(xué)史之前,數(shù)學(xué)在我的腦子里,就是一個很難很難的學(xué)科。數(shù)學(xué)漂浮在我的腦海里,像一只枯萎的蝴蝶,死板而又無味。
但是在閱讀數(shù)學(xué)史之后我知道了,數(shù)學(xué)的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學(xué)與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類文明的絢爛的花朵。這便使數(shù)學(xué)成為人類文化中最基礎(chǔ)的工具。而在現(xiàn)代社會中,數(shù)學(xué)正在對科學(xué)和社會的發(fā)展提供著不可或缺的理論和技術(shù)支持。
就像書中所寫的一樣,或許在數(shù)學(xué)課上講一些有趣的小故事,可以提高學(xué)生的專注力和興趣,然后引入課堂。
可能是由于我見識短淺(?)我一直認為中國數(shù)學(xué)是非常高深,深不可測的那種,認為中國數(shù)學(xué)在世界有最高的影響力和地位。但其實中數(shù)是非常具有影響力(九九乘法表,11的兩邊一拉中間相加)但希臘數(shù)學(xué)是獨一無二的,盡管在現(xiàn)在的數(shù)學(xué)之中,希臘數(shù)學(xué)家的邏輯推理和證明都是擺在數(shù)學(xué)中心的。數(shù)學(xué)家或許有許多不同,但他們絕對擁有財力·時間和數(shù)學(xué)天賦。他們的嚴謹性和專業(yè)精神恐怕是我畢生難以追求的吧。
總的來說,數(shù)學(xué)是人類創(chuàng)造活動的過程,而不單純是一種形式化的結(jié)果;運用辨證唯物主義的觀點看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的'形成和發(fā)展過程中,不但表現(xiàn)出矛盾運動的特點,而且它們與社會、政治、經(jīng)濟以及一般人類的文化有著密切的聯(lián)系,而這些聯(lián)系就像龍須酥一樣香濃醇厚,萬般絲滑,密不可分,是不能夠輕易斬斷的關(guān)系!
數(shù)學(xué)史不僅僅是單純的數(shù)學(xué)成就的編年記錄。數(shù)學(xué)的發(fā)展決不是一帆風(fēng)順的,在跟讀的情況下是充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至?xí)媾R困難和戰(zhàn)盛危機的斗爭記錄。無理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學(xué)創(chuàng)造的真實過程,而這種真實的過程是在教科書里以定理到定理的形式被包裝起來的。對這種創(chuàng)造過程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強信心。
我相信在未來,數(shù)學(xué)史帶給我的影響,會影響到我的一生,我也希望中國數(shù)學(xué)能夠源遠流長,從《九章算術(shù)》到《周髀算經(jīng)》呈現(xiàn)出更多的”東方數(shù)學(xué)“的色彩!
讀《數(shù)學(xué)簡史》有感 篇23
數(shù)學(xué)是神秘的,古老而明亮,在人類歷史長河中,閃閃發(fā)光,我讀了數(shù)學(xué)史后,知道了數(shù)學(xué)的起源,發(fā)展與未來的走向,其中,《微積分與應(yīng)用數(shù)學(xué)》給我留下深刻印象
16世紀到17世紀,可以說是一個數(shù)學(xué)史路上一個里程碑,在16世紀早期,學(xué)者們創(chuàng)造了代數(shù),他們被稱為“未知數(shù)計算家”,在那個時期,代數(shù)占據(jù)了數(shù)學(xué)史的中心位置,而到了16世紀末17世紀初,人類開始了新的探索,代數(shù)與幾何共存,以此來研究天文,工程,航海,甚至是政治上的一些問題:開勒普用希臘圓錐描述太陽系,托馬斯·哈里奧特則發(fā)展代數(shù),笛卡爾把代數(shù)和幾何結(jié)合,從而開始理解彗星,光等現(xiàn)象,這一時期,可以說是各種數(shù)學(xué)成就在此出生,但最出名的,還是微積分,當時人們無法用數(shù)字表現(xiàn)出天體的運動,無法表現(xiàn)一些抽象的物體,于是牛頓與萊布尼茨發(fā)明了微積分,但微積分始終還是較為抽象,不就后,當時最著名的數(shù)學(xué)家——歐拉也做出了一系列成就:三角形中的幾何學(xué),多面體的基本定理,有趣的.是,歐拉甚至將數(shù)應(yīng)用于船舶,中彩票或是過橋,歐拉將自己生活的方方面面都往數(shù)學(xué)上想,在他的世界中,數(shù)學(xué)無處不在。
我們不難看出這些數(shù)學(xué)家的發(fā)明的確大大改變了人們的生活,他們掌握了探索世界的鑰匙——數(shù)學(xué),將數(shù)學(xué)應(yīng)用到方方面面,我們現(xiàn)代生活不也是如此,處處是數(shù)學(xué),但最重要的是,我們熱愛數(shù)學(xué)。
讀《數(shù)學(xué)簡史》有感 篇24
數(shù)學(xué),一根串著文明歷史發(fā)展的閃耀金繩,它與文學(xué)物理學(xué)藝術(shù)經(jīng)濟學(xué)或音樂一樣,是人類不斷發(fā)展,努力的結(jié)果。
對數(shù)學(xué)不太敏感的我,拿起這本數(shù)學(xué)史,一開始是不愿意翻開的,認為它語言生澀,一定有很多的生僻又陌生的專有名詞,幾乎滿篇皆是,所以從收到這本書之后2天內(nèi)都沒有看過。但是為了完成劉老師的作業(yè),我硬著頭皮翻開了這本陌生的書。這本書是以時間發(fā)展為主線進行編布的。
讀 開端的時候我就覺得這本書很不一樣語言是親切、嚴謹?shù)挠^點是新穎的。作者“從歷史開始學(xué)數(shù)學(xué)”的觀點讓我對這本書產(chǎn)生了興趣。變得愿意與他一起跟隨數(shù)學(xué)的腳步,一頁一頁翻下去,讀下去。在書本中,有許多我認識的老朋友,他們曾經(jīng)在小學(xué)或是初中課本上出現(xiàn)過。像歐幾里得、笛卡爾。他們是數(shù)學(xué)的奠基人,為數(shù)學(xué)之路鋪上卵石。在這本書中也出現(xiàn)過一些我不熟悉的偉大數(shù)學(xué)家,他們在認真探究,證明的場景一幕幕浮現(xiàn)在腦海,令人心生敬畏。
我記憶最深刻的就是一位打破了“數(shù)學(xué)家都是男性”觀念的法國優(yōu)秀女數(shù)學(xué)家———索菲.熱爾曼!
她在所謂的'“啟蒙運動”中成長,懷揣著熾熱的想成為數(shù)學(xué)家的愿望,在困難重重克服了社會對女性知識分子的偏見,在彈性理論上取得重要結(jié)果。實在令人佩服!
當今社會,數(shù)學(xué)在多領(lǐng)域工作,在工地、廣場、車站、實驗室......
我們需要數(shù)學(xué),今天需要數(shù)學(xué),未來也一樣需要數(shù)學(xué),因為“數(shù)學(xué)不是被發(fā)現(xiàn)出來的,而是被發(fā)明出來的!”
學(xué)好數(shù)學(xué)就是走好未來的一大步!
讀《數(shù)學(xué)簡史》有感 篇25
數(shù)學(xué)是歷史的長河中一顆閃亮的明珠,閃閃發(fā)光。生活中離不開數(shù)學(xué),處處都能看到數(shù)學(xué)的影子。這個寒假老師叫我們讀了一本叫做《這才是好讀的數(shù)學(xué)史》的書。更加深入的了解了不同國家的不同數(shù)學(xué)發(fā)展歷史。讓我從中對數(shù)學(xué)有了不同的理解。
我們在學(xué)校也一直在學(xué)習(xí)數(shù)學(xué),卻從來沒有學(xué)過數(shù)學(xué)的發(fā)展歷程,通過閱讀這本書我也明白了,從古至今的數(shù)學(xué)發(fā)展是很漫長的但卻十分有意義。就像現(xiàn)在我們所學(xué)的數(shù)學(xué),其實背后都有著數(shù)學(xué)家們探索的故事。從中我們也能感受到數(shù)學(xué)家不斷追求真理的那種執(zhí)著。這本書不僅講了中國的數(shù)學(xué)發(fā)展,也還講了許多國家的數(shù)學(xué)發(fā)展。我們也看到了數(shù)學(xué)的.遼闊,現(xiàn)在我們學(xué)的只是皮毛。
數(shù)學(xué)發(fā)展的歷史長河中總有一些光輝一直不掉的數(shù)學(xué)家們,他們推進了數(shù)學(xué)的發(fā)展,真正的印刻在了歷史的長河里。但是在探索數(shù)學(xué)的道路上,在他們的背后還有許多一直默默探索的人,而能夠支持他們一直走下去的理由,我想只能是熱愛吧。因為熱愛,所以想探索更多。
對于數(shù)學(xué)的探索。并不是只屬于某一個國家,而是屬于全人類的。就像古希臘數(shù)學(xué)的中心是幾何,他們也探索出了許多關(guān)于幾何的真理。但這些真理最后也被全世界所使用,所以在探究數(shù)學(xué)這條路上全人類都是一致的。雖然在公元五世紀標志著古希臘數(shù)學(xué)的終結(jié),但是,古希臘的數(shù)學(xué)也給了人們許多真理。
通過閱讀這本書,我不僅了解到了數(shù)學(xué)的發(fā)展歷史,也明白了數(shù)學(xué)的發(fā)展是無止境的,具有創(chuàng)新,是開啟科學(xué)大門的鑰匙,是人類智慧的結(jié)晶。
讀《數(shù)學(xué)簡史》有感 篇26
從小到大,在學(xué)習(xí)數(shù)學(xué)的過程中,我們接觸大量的數(shù)學(xué)題,但卻對數(shù)學(xué)的歷史很少提及。《數(shù)學(xué)史》,是一本專門研究數(shù)學(xué)的歷史,娓娓道來數(shù)學(xué)從古代到先代的發(fā)展史,滿足了我的好奇,把數(shù)學(xué)的發(fā)展過程展示出來。
本書于1958年出版,作者是J.F.斯科特。書中主要闡述西方數(shù)學(xué)的發(fā)展歷史,但也專門用-章講述印度和中國的數(shù)學(xué)發(fā)展。沿著時間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過程。
數(shù)學(xué)對于我來說是一個奇妙的科目,它不僅僅是一堆數(shù)字和符號連接在一起的公式,更是時代和科技的`發(fā)展與進步。這本書讓我明白數(shù)學(xué)的起源與發(fā)展,隨著歷史的長河不斷向過往延伸,我熱愛數(shù)學(xué),并不是因為它帶給我較高的成績,而是我本身在解出一道難題時的自豪與它帶給我的成就感,我享受解題的過程,隨著時間的流逝心卻在題海中慢慢放松,變得平靜。而在對數(shù)學(xué)史了解之后,你就像身在一張地圖,但你卻清楚的知道自己的位置,尋找方向就愈加容易。
這本書很好的幫我更上一層樓,讓我懷著對數(shù)學(xué)的熱愛不斷探索,即便自己只不過是浩瀚星河中一粒塵埃,卻不顯得十足渺小。
學(xué)習(xí)數(shù)學(xué),最好能夠先了解它的歷史與背景,這樣才能明白自己在學(xué)著什么,對它產(chǎn)生興趣而不是當成必須完成的任務(wù),所以我也極力推薦大家看這本書。
讀《數(shù)學(xué)簡史》有感 篇27
本書上篇 數(shù)學(xué)簡史共12章節(jié),以時間順序講述。從3.7萬年到如今,人類在不斷進步,而數(shù)學(xué)也隨著人類的進步而進步。在這本書中,強調(diào)了數(shù)學(xué)的抽象性與神秘性。
我們現(xiàn)在學(xué)習(xí)的知識都是先輩們經(jīng)過漫長探索、研究、討論總結(jié)出的。書中出現(xiàn)的故事和公式使人眼前一新。比如古埃及人求圓的面積時,實際上是求圓的近似值。如今大家都知道π·r,古埃及人卻是用(8/9·d)求S圓的近似值?梢园l(fā)現(xiàn)古埃及人在這個公式里并沒有使用到“π”,這樣反而要方便些。
我注意到的一個故事是:21世紀開始,克萊學(xué)院決定在克萊的'領(lǐng)導(dǎo)下,選擇7個數(shù)學(xué)課題,并予每個課題100萬美金的獎金,而那7個數(shù)學(xué)課題是關(guān)于“千禧年問題”書中并沒有提到7個問題分別是什么,于是便上網(wǎng)查了查。分別是:戴雅猜想、霍奇猜想、納維爾-斯托克斯方程、P與NP問題、龐家萊猜想、黎曼假設(shè)、楊-米爾斯理論。這7個問題是真的難,連題目都看不懂的那種難.
有一個問題與開普勒猜想有關(guān):如何將最大數(shù)量的球體放置在最小的空間中,我認為這和奇點有些相似,但看起來不成立的樣子。但在那些數(shù)學(xué)家的眼里,這仿佛是一個十分有趣,又值得思考的問題。托馬斯·黑爾斯最終證明了它。
數(shù)學(xué)是抽象的,也是無限的,他們的出現(xiàn)大概是我們的祖先為了方便生活而發(fā)明出來的。到如今,數(shù)學(xué)在不斷的進步,但還是有許多十分困難的問題在等著我們?nèi)ソ獯。?shù)學(xué)不僅在生活中扮演著重要的角色,還是世界通用的語言。
讀《數(shù)學(xué)簡史》有感 篇28
數(shù)學(xué)的歷史源遠流長,而通過這本書我對數(shù)學(xué)的歷史有了基礎(chǔ)的了解。讓我初步了解了數(shù)學(xué)這門科學(xué)產(chǎn)生與發(fā)展的歷史過程,同時也感受到了數(shù)學(xué)家們的嚴謹?shù)闹螌W(xué)態(tài)度以及鍥而不舍的探索精神。
總而言之《這才是好讀的數(shù)學(xué)史》從數(shù)學(xué)的源頭寫起,分別介紹了古希臘,古印度,古巴比倫,古代中國,以及中世紀歐洲,這本書詳細的介紹了每個國家的數(shù)學(xué)發(fā)展,同時聯(lián)系了地理,將數(shù)學(xué)在世界版圖上鏈接起來。
其中在阿拉伯數(shù)學(xué)中,提到了帕斯卡三角形,也就是我們非常熟悉的'楊輝三角,讓我更加了解了楊輝三角,以及阿拉伯人在幾何學(xué)和三角學(xué)方面做出的重要貢獻。
一說起π,就想到了3.1415926……這一個無限不循環(huán)的數(shù)?搔凶畛醪⒉皇潜硎疽粋數(shù),而是希臘字母對應(yīng)英文字母的P?梢姦械臍v史悠久。書中也舉例了從約公元前1650年到2002年,人們從只能計算圓的周長的近似值到可以用現(xiàn)代計算器計算沒有誤差?梢姅(shù)學(xué)家們對數(shù)學(xué)的執(zhí)著。
這本書結(jié)合歷史地理為我們講述了與眾不同且吸引人的數(shù)學(xué)史,同時也讓我感受到了數(shù)學(xué)獨一無二的魅力。
【讀《數(shù)學(xué)簡史》有感】相關(guān)文章:
讀《時間簡史》有感12-30
讀時間簡史有感04-20
讀《時間簡史》有感15篇03-29
讀《萬物簡史》有感04-04
讀《時間簡史》有感(15篇)04-02
讀時間簡史有感15篇04-24
讀時間簡史有感(15篇)04-24
讀《時間簡史》有感(合集15篇)04-05
讀《時間簡史》有感集合15篇04-04