国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>理工論文>電子通信論文>傳輸系統(tǒng)中的時鐘同步技術(shù)

傳輸系統(tǒng)中的時鐘同步技術(shù)

時間:2023-02-20 23:43:46 電子通信論文 我要投稿
  • 相關(guān)推薦

傳輸系統(tǒng)中的時鐘同步技術(shù)

同步模塊是每個系統(tǒng)的心臟,它為系統(tǒng)中的其他每個模塊饋送正確的時鐘信號。因此需要對同步模塊的設(shè)計和實現(xiàn)給予特別關(guān)注。本文對影響系統(tǒng)設(shè)計的時鐘特性進行了考察,并對信號惡化的原因進行了評估。本文還分析了同步惡化的影響,并對標準化組織為確保傳輸質(zhì)量和各種傳輸設(shè)備的互操作性而制定的標準要求進行了探討。

  摘要:
  網(wǎng)絡同步和時鐘產(chǎn)生是高速傳輸系統(tǒng)設(shè)計的重要方面。為了通過降低發(fā)射和接收錯誤來提高網(wǎng)絡效率,必須使系統(tǒng)的各個階段都要使用的時鐘的質(zhì)量保持特定的等級。網(wǎng)絡標準定義同步網(wǎng)絡的體系結(jié)構(gòu)及其在標準接口上的預期性能,以保證傳輸質(zhì)量和傳輸設(shè)備的無縫集成。有大量的同步問題,系統(tǒng)設(shè)計人員在建立系統(tǒng)體系結(jié)構(gòu)時必須十分清楚。本文論述了時鐘惡化的各種來源,如抖動和漂移。本文還討論了傳輸系統(tǒng)中時鐘惡化的原因和影響,并分析了標準要求,提出了各種實現(xiàn)技巧。

  基本概念:抖動和漂移
  抖動的一般定義可以是“一個事件對其理想出現(xiàn)的短暫偏離”。在數(shù)字傳輸系統(tǒng)中,抖動被定義為數(shù)字信號的重要時刻在時間上偏離其理想位置的短暫變動。重要時刻可以是一個周期為 T1 的位流的最佳采樣時刻。雖然希望各個位在 T 的整數(shù)倍位置出現(xiàn),但實際上會有所不同。這種脈沖位置調(diào)制被認為是一種抖動。這也被稱為數(shù)字信號的相位噪聲。在下圖中,實際信號邊沿在理想信號邊沿附近作周期性移動,演示了周期性抖動的概念。

圖 1.抖動示意

  抖動,不同于相位噪聲,它以單位間隔 (UI) 為單位來表示。一個單位間隔相當于一個信號周期 (T),等于 360 度。假設(shè)事件為 E,第 n 次出現(xiàn)表示為 tE[n] 。則瞬時抖動可以表示為:
  
  一組包括 N 個抖動測量的峰到峰抖動值使用最小和最大瞬時抖動測量計算如下:
  
  漂移是低頻抖動。兩者之間的典型劃分點為 10 Hz。抖動和漂移所導致的影響會顯現(xiàn)在傳輸系統(tǒng)的不同但特定的區(qū)域。
  抖動類型
  根據(jù)產(chǎn)生原因,抖動可分成兩種主要類型:隨機抖動和確定性抖動。隨機抖動,正如其名,是不可預測的,由隨機的噪聲影響如熱噪聲等引起。隨機抖動通常發(fā)生在數(shù)字信號的邊沿轉(zhuǎn)換期間,造成隨機的區(qū)間交叉。毫無疑問,隨機抖動具有高斯概率密度函數(shù) (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 決定。由于高斯函數(shù)的尾在均值的兩側(cè)無限延伸,瞬時抖動和峰到峰抖動可以是無限值。因此隨機抖動通常采用其均方根值來表示和測量。

圖 2.以高斯概率密度函數(shù)表示的隨機抖動

  對抖動余量來講,峰到峰抖動比均方根抖動更為有用,因此需要把隨機抖動的均方根值轉(zhuǎn)換成峰到峰值。為將均方根抖動轉(zhuǎn)換成峰到峰抖動,定義了隨機抖動高斯函數(shù)的任意極限 (arbitrary limit)。誤碼率 (BER) 是這種轉(zhuǎn)換中的一個有用參數(shù),其假設(shè)高斯函數(shù)中的瞬時抖動一旦落在其強制極限之外即出現(xiàn)誤碼。通過下面兩個公式,就可以得到均方根抖動到峰到峰抖動的換算。3
       
  由公式可得到下表,表中峰到峰抖動對應不同的 BER 值。


  確定性抖動是有界的,因此可以預測,且具有確定的幅度極限。考慮集成電路 (IC) 系統(tǒng),有大量的工藝、器件和系統(tǒng)級因素將會影響確定性抖動。占空比失真 (DCD) 和脈沖寬度失真 (PWD) 會造成數(shù)字信號的失真,使過零區(qū)間偏離理想位置,向上或向下移動。這些失真通常是由信號的上升沿和下降沿之間時序不同而造成。如果非平衡系統(tǒng)中存在地電位漂移、差分輸入之間存在電壓偏移、信號的上升和下降時間出現(xiàn)變化等,也可能造成這種失真。

圖 3,總抖動的雙模表示


  數(shù)據(jù)相關(guān)抖動 (DDJ) 和符號間干擾 (ISI) 致使信號具有不同的過零區(qū)間電平,導致每種唯一的位型出現(xiàn)不同的信號轉(zhuǎn)換。這也稱為模式相關(guān)抖動 (PDJ)。信號路徑的低頻截止點和高頻帶寬將影響 DDJ。當信號路徑的帶寬可與信號的帶寬進行比較時,位就會延伸到相鄰位時間內(nèi),造成符號間干擾 (ISI)。低頻截止點會使低頻器件的信號出現(xiàn)失真,而系統(tǒng)的高頻帶寬限制將使高頻器件性能下降。7
  正弦抖動以正弦模式調(diào)制信號邊沿。這可能是由于供給整個系統(tǒng)的電源或者甚至系統(tǒng)中的其他振蕩造成。接地反彈和其他電源變動也可能造成正弦抖動。正弦抖動廣泛用于抖動環(huán)境的測試和仿真。不相關(guān)抖動可能由電源噪聲或串擾和其他電磁干擾造成。
  考慮抖動對數(shù)字信號的影響時,需要將整個確定性抖動和隨機抖動考慮在內(nèi)。確定性抖動和隨機抖動的總計結(jié)果將產(chǎn)生另外一種概率分布4:雙模響應,其中部表示確定性抖動,尾部為高斯響應,表示隨機抖動分量。
 
  抖動測量 — TIE、MITE 和 TEDV
  時間間隔誤差 (TIE) 是通過對實際時鐘間隔的測量和對理想?yún)⒖紩r鐘同一間隔的測量得到的。在給定時間 t,以一個稱為觀測間隔的時間間隔產(chǎn)生時間 T(t) 的時鐘,其相對于時鐘 Tref(t) 的TIE 可通過下面公式表示。(x(t) 稱為誤差函數(shù)。)
  TIE 表示信號中的高頻相位噪聲,提供了實際時鐘的每個周期偏離理想情況的直接信息。TIE 用于計算大量統(tǒng)計派生函數(shù)如 MTIE、TDEV 等。
  最大時間間隔誤差 (MTIE) 定義為,在一個觀測時間 (t=nt0) 內(nèi),一個給定時鐘信號相對于一個理想時鐘信號的最大峰到峰延遲變化,其中該長度的所有觀測時間均在測量周期 (T) 之內(nèi)。使用下面公式進行估計:
    
  MTIE是針對時間的緩變或漂移而定義的。當需要分析時鐘的長期特性時,就需要對MTIE進行測量。MTIE 值是對一個時鐘信號的長期穩(wěn)定性的一種衡量。

圖 4.TIE 的圖形表示

  TDEV 是另外一個統(tǒng)計參數(shù),作為集成時間的函數(shù)對一個信號的預期時間變化的測量。DEV 也能提供有關(guān)信號相位(時間)噪聲頻譜分量的信息。TIE 圖中每個點的標準偏差是對一個觀測間隔計算的,該觀測間隔滑過整個測量時間。該值在整個上述測量時間內(nèi)進行平均以得到該特定間隔的 TDEV 值。增大觀測間隔,重復測量過程。TDEV 是對短期穩(wěn)定性的一種衡量,在評估時鐘振蕩器性能時有用。TDEV 屬于時間單位。
  高速傳輸系統(tǒng)中抖動和漂移的原因
  最常用的一種時鐘體系結(jié)構(gòu)是,在備板上運行一個低頻時鐘,在每個傳輸卡上產(chǎn)生同步的高頻時鐘。低頻時鐘在集成電路內(nèi)或通過分立 PLL 實現(xiàn)進行倍頻以產(chǎn)生高頻時鐘。通過典型的 PLL 倍頻,倍頻后時鐘上的相位噪聲增大為原來時鐘相位噪聲的 20*log(N) 次方,其中 N 為倍頻系數(shù)。此外,PLL 參考時鐘輸入上的抖動將延長鎖定時間,且當輸入抖動過大時高速 PLL 甚至無法實現(xiàn)鎖定。在備板上采用一種更高速的差分時鐘將比采用低速單端時鐘具有更好的抖動性能。
  由于 VCO 對輸入電壓變化較為敏感,因此電源噪聲是增大時鐘抖動的一個主要因素。輸出時鐘抖動幅度與電源噪聲幅度、VCO 增益成正比,與噪聲頻率成反比。因?qū)Ь電阻形成的電阻下降和因?qū)Ь電感形成的電感噪聲而造成的電源或接地反彈,會對上述輸出時鐘抖動產(chǎn)生相似的影響。在系統(tǒng)板上對電源進行充分過濾,靠近集成電路電源引腳提供去耦電容,可以確保 PLL 獲得更高的抖動性能。
  在系統(tǒng)板內(nèi),時鐘和數(shù)據(jù)相互獨立,發(fā)射和接收端在啟動、保持和延遲時間方面的變化對高速率非常關(guān)鍵。因數(shù)據(jù)和時鐘路徑中存在不同有源元件而使數(shù)據(jù)和時鐘路徑之間出現(xiàn)傳播延遲差異, 時鐘路徑之間的接線延遲差異,數(shù)據(jù)位之間的接線延遲差異,數(shù)據(jù)和時鐘路徑之間不同的負載情況,分組長度差異等等,均可能造成上述變化。在規(guī)劃系統(tǒng)抖動余量時,必須將不同信號路徑的變化考慮在內(nèi)。
  當在一段距離上進行傳輸時,在發(fā)射機和接收機中的很多點上存在抖動累積。在發(fā)射機物理層實現(xiàn)中,DAC 非線性或激光非線性等非線性特性會加重信號失真。在傳輸介質(zhì)和接收機中,除了外部亂真源(大多在銅導線中)之外,因不同頻率和調(diào)制效應而導致的光纖失真、因接收機實現(xiàn)(主要與帶寬有關(guān))和時鐘提取電路實現(xiàn)而導致的信號相關(guān)相位偏離,會加重信號流的抖動。

圖 5.來自 TIE 圖的 MTIE 偏差

  具體到 SDH(同步數(shù)字系列)傳輸,有大量的系統(tǒng)級事件會導致抖動。在將 PDH(準同步數(shù)字系列)支路映射為 SDH 幀并通過 SDH NE(網(wǎng)絡組件)進行傳輸?shù)牡湫蛡鬏斚到y(tǒng)中,在 PDH 支路于 SDH 的終端多路分配器解映射之前,將在每個中間節(jié)點處出現(xiàn) VC(虛擬容器)的重新同步。有間隙的時鐘用于將各個支路映射到 STM-N 幀和從 STM-N 幀解映射,發(fā)出與開銷、固定填充和調(diào)整位相應的脈沖,因而造成映射抖動。采用調(diào)整機會位補償 PDF 支路中頻率偏移的方法會造成等待時間抖動。還有指針調(diào)整機制,用于對來自初始 NE 的輸入 VC 與本地產(chǎn)生的輸出 STM-N 幀之間的相位波動進行補償。根據(jù)頻率偏離,VC 在 STM-N 幀中前后移動。這將使 VC 提取點看到位流中的突然變化,導致稱為指針抖動的類型抖動。所有上述系統(tǒng)級抖動都將加重總的確定性抖動。
  盡管所有上述因素都會加重從源到目的地之間信號傳播的抖動,標準要求仍

然規(guī)定在傳輸點需具有比理論值更低的抖動數(shù)值。這樣,考慮到時鐘倍頻、電源變化、電-光-電轉(zhuǎn)換、發(fā)射和接收影響以及其他致使實際信號惡化的失真信號的影響,在源處驅(qū)動信號的時鐘將具有一個相對很低的抖動數(shù)值。
  抖動對收發(fā)器的影響
  理想情況下,數(shù)字信號是在兩個相鄰電平轉(zhuǎn)換點的中點進行采樣的。抖動之所以會造成誤碼,是由于相對于理想中點,它改變了信號的邊沿轉(zhuǎn)換點。誤碼可能由于信號流邊沿變化太晚(在時間上比理想中點晚0.5UI(單位間隔相當于信號的一個周期))或太早(在時間上比理想中點早0.5UI)所致。當時鐘采樣邊沿在信號流的任何一側(cè)錯過0.5UI 時,將出現(xiàn) 50% 的誤碼概率,假設(shè)平均轉(zhuǎn)換密度為 0.5。7如果分別知道確定性抖動和隨機抖動,可通過上述兩個數(shù)字和將峰到峰抖動值與均方根抖動值聯(lián)系在一起的表,來估計誤碼率。校準抖動,定義為數(shù)字信號的最佳采樣時刻與從其提取出來的采樣時鐘之間的短期變化,可以造成上述誤碼。對于商業(yè)應用,源時鐘和源發(fā)射接口抖動規(guī)范將遠遠低于 1UI。
  發(fā)射接口抖動規(guī)范通常與接收端的輸入抖動容限相匹配。對于抖動測量回路濾波器截止頻率,尤其如此。例如,在 SDH 系統(tǒng)中,有兩種抖動測量帶寬,分別規(guī)定:一個用于寬帶測量濾波器(f1 到 f4),一個用于高頻帶測量濾波器(f3 到 f4)。數(shù)值 f1 指可在線路系統(tǒng)的 PLL 中使用的輸出時鐘信號的最窄時鐘截止頻率。低于此帶寬的頻率的抖動將通過系統(tǒng),而較高頻率的抖動則被部分吸收。數(shù)值 f3 表示輸入時鐘捕獲電路的帶寬。高于此頻率的抖動將導致校準抖動。校準抖動造成光功率損失,需要額外光功率以防各種惡化。因此限制發(fā)射機端高頻帶頻譜的抖動十分重要。
  漂移對收發(fā)器的影響
  市場上銷售的大多數(shù)電信接收機都使用了一個緩沖器,以適應線路信號中存在的隨機波動。下面框圖6詳細表示出這一概念。恢復時鐘將數(shù)據(jù)送入富有彈性的緩沖器,而系統(tǒng)時鐘則將數(shù)據(jù)送出到設(shè)備的核心部位。
  在準同步傳輸系統(tǒng)中,發(fā)射機和接收機工作在相互獨立而又極為接近的頻率上,fL和 Fs分別表示發(fā)射機和接收機的頻率。當兩者之間存在相位或頻率差異時,彈性存儲會將其消除,否則緩沖器將出現(xiàn)欠載或溢出(取決于差異的幅度和彈性緩沖器的大。,造成一次可控的幀滑動(基本速率傳輸)或一次位調(diào)整(高階異步多路復用器)。
  在準同步應用中,根據(jù)可接受的緩沖滑動對頻率變化和緩沖器深度進行了標準化。最初的網(wǎng)絡主要用于語音傳輸,在一定的頻率門限之下不會造成語音質(zhì)量下降。ITU-T 規(guī)范規(guī)定該變化為  +/-50ppm。但是隨著網(wǎng)絡開始傳送壓縮語音、傳真格式的數(shù)據(jù)、視頻以及其他種類的媒體應用,對于差錯和重傳以及剛剛興起的同步網(wǎng)絡,滑動使效率嚴重下降。
  在同步傳輸系統(tǒng)中,系統(tǒng)時鐘通常同步到用于接收更高時鐘等級信號的接口的恢復時鐘上。恢復時鐘和系統(tǒng)時鐘之間相位和頻率的瞬時和累積差異將被彈性緩沖器吸收,否則將導致彈性存儲器溢出/欠載(取決于緩沖器大小和變化的幅度),造成指針調(diào)整而延遲或提前幀傳輸、幀滑動或系統(tǒng)中某處出現(xiàn)位調(diào)整。
  在同步系統(tǒng)中,所有網(wǎng)絡組件工作在同一平均頻率,可以通過指針機制消除幀惡化。這些指針機制將提前或延遲有效載荷在傳輸幀中的位置,從而調(diào)整接收和系統(tǒng)時鐘中存在的頻率和相位變化。SDH 收發(fā)器中的緩沖器比 PDH 收發(fā)器中的要小,而且對于 SDH 系統(tǒng)中可能導致的指針移動等不規(guī)則性有限制。因此,與 PDH 系統(tǒng)相比,同步系統(tǒng)的要求更為嚴格。由于網(wǎng)絡發(fā)展的歷史和不同網(wǎng)絡之間的互操作連接,在某些階段或其他階段,這些同步網(wǎng)絡會通過準同步網(wǎng)絡來連接。因此 PDH 網(wǎng)絡的時鐘體系結(jié)構(gòu)也要考慮在內(nèi)。
  MTIE 提供了時鐘相對于已知理想?yún)⒖紩r鐘的峰值時間變化。在同步傳輸和交換設(shè)備的彈性緩沖器的設(shè)計中將用到 MTIE 值。在彈性存儲中,緩沖器填充水平與輸入數(shù)字信號和本地系統(tǒng)時鐘之間的 TIE 成正比。確保時鐘符合有關(guān) MTIE 的時鐘規(guī)范,將保證不會超過一定的緩沖器門限。因此,在緩沖器設(shè)計中,其大小取決于 MTIE 的規(guī)定極限。

圖6,典型傳輸系統(tǒng)的接收機接口

  系統(tǒng)時鐘輸出相位擾動對收發(fā)器的影響
  一個時鐘的輸出相位變化可以通過分析其 MTIE 信息獲得。漂移產(chǎn)生(在自由振蕩模式和同步模式中)主要指系統(tǒng)中所用時鐘振蕩器的長期穩(wěn)定性,在自由振蕩模式中系統(tǒng)的穩(wěn)定性僅受振蕩器的穩(wěn)定性影響。除了漂移產(chǎn)生之外,輸出時鐘相位還受到大量系統(tǒng)不規(guī)則特性的影響。
  特別是對一個系統(tǒng)同步器而言,將參考源從一個不良或惡化參考時鐘轉(zhuǎn)換到一個正常參考時鐘可能會導致輸出相位擾動。傳輸用高速 PLL 中使用的傳統(tǒng) VCO(壓控振蕩器)在改變參考時鐘時采用了切換電容器組的方法。這種切換轉(zhuǎn)換會對輸出時鐘造成暫時的相位偏移。采用超低抖動時鐘倍頻器電路可以解決這個問題。
  高性能網(wǎng)絡時鐘在系統(tǒng)的所有參考時鐘都失去時采用一種稱為“保持”的機制。這是通過記憶存儲技術(shù)產(chǎn)生系統(tǒng)最后一個已知良好參考時鐘來實現(xiàn)的。進入和退出保持模式可能會對輸出造成相位擾動。當處于保持模式中時,由于準確頻率的再生不夠精確,因此會繼續(xù)產(chǎn)生輸出相位誤差。集成電路技術(shù)的進步已使保持精度達到了 0.01ppb。輸入?yún)⒖紩r鐘惡化和對系統(tǒng)的維護測試(不會導致參考時鐘切換)過少,也會造成輸出相位擾動。
  系統(tǒng)輸出擾動是有限的,取決于系統(tǒng)在較低層次可以接受的輸入容限。例如,符合 G.813 選項 1 的時鐘,其相位擾動中所允許的相位斜率和最大相位誤差被限制為 1μS,最大相位斜率為 7.5ppm,兩個 120ns 相位誤差段,其余部分的相位斜率為 0.05ppm。這些數(shù)字對應于 G.825 標準規(guī)定的輸入抖動容限,該標準描述了在 SDH 網(wǎng)絡內(nèi)對抖動和漂移的控制。
  當輸出相位被擾動時,將相位誤差的幅度和速率保持在標準組織所建議的極限之內(nèi),可確保在端到端系統(tǒng)中對信號惡化進行妥善處理,從而避免數(shù)據(jù)損壞或丟失。例如,當系統(tǒng)同步器進行參考時鐘切換時,如果輸出相位誤差位于規(guī)范要求之內(nèi),同步器就可實現(xiàn)“無間斷”參考時鐘切換,指示存在緩沖器溢出或欠載,造成指針移動、位調(diào)整或滑動。
  結(jié)論
  網(wǎng)絡同步和時鐘產(chǎn)生是所有高速傳輸網(wǎng)絡系統(tǒng)中最重要的部分。本文論述了時鐘惡化的不同類型,主要是抖動和漂移。文章還詳細論述了造成上述惡化的原因,以及它們?nèi)绾斡绊憘鬏斚到y(tǒng)。對時

鐘子系統(tǒng)進行系統(tǒng)性設(shè)計和實現(xiàn),將提高整個系統(tǒng)的性能,降低誤碼率,易于集成,提供更高的傳輸質(zhì)量和效率。


【傳輸系統(tǒng)中的時鐘同步技術(shù)】相關(guān)文章:

1394技術(shù)及其在圖像傳輸系統(tǒng)中的應用08-06

CPLD在多路高速同步數(shù)據(jù)采集系統(tǒng)中的應用08-06

寬帶CDMA系統(tǒng)中的功控技術(shù)08-06

LVDS技術(shù)及其在多信道高速數(shù)據(jù)傳輸中的應用08-06

淺談藥物傳輸系統(tǒng)研究的幾個熱點08-05

嵌入式系統(tǒng)中的內(nèi)存壓縮技術(shù)08-06

Java技術(shù)在嵌入式系統(tǒng)中的應用08-06

微波擴頻技術(shù)在交通系統(tǒng)中的運用08-06

高速視頻信號的光纖傳輸系統(tǒng)設(shè)計08-06