- 相關(guān)推薦
變換條件,理清數(shù)學(xué)解題思路
變換條件,理清數(shù)學(xué)解題思路江蘇 新沂 ●許遵惠
在數(shù)學(xué)應(yīng)用題的解答中,教師教會學(xué)生在不改變數(shù)量關(guān)系的前提下,對應(yīng)用題的條件進行分合、順序、方向、順逆等變換,既能找到解題的突破口,又能培養(yǎng)學(xué)生的邏輯思維能力。下面,筆者根據(jù)自己的教學(xué)實踐,談幾點粗淺的做法和思考。
一、分合相互變換
在小學(xué)數(shù)學(xué)中,有些關(guān)于工程方面的應(yīng)用題,我們可以把材料中的“合”改成“分”,或者把“分”改成“合”,這樣易于建立條件與條件之間的關(guān)系,從而找到解題思路。例如:
例1(改編題):上海世博會修一項工程,由甲乙兩工程隊合修需要10天完成。如果讓甲隊先做6天,剩下的工程由乙隊單獨做12天完成,乙隊單獨修這項工程需要幾天?
題目中給的條件,又是“合修”,又是“獨做”,看起來很復(fù)雜,所給的條件很難聯(lián)系上。但在解題時,如果把“甲隊先做6天”“乙隊單獨做12天”變換成“甲乙隊合做6天,乙再單獨做(12-6)天”。以上條件的變換不過是把乙隊單獨做的12天先劃出6天,當(dāng)做與甲隊合做而已,對問題的結(jié)果沒有絲毫影響。而條件敘述變化后,使甲乙隊合做的工作效率為1/10,得以應(yīng)用,展開了解題的思路。
列式:l÷[(1-1/10×6)+(12-6)]=15天。
倒2(改編題):北京奧運會有很多工程,其中某一項工程,如果由甲隊單獨做,正好能在規(guī)定的時間內(nèi)完成;如果由乙隊單獨做,那么要超出規(guī)定時間的3天才能完成;如果先由甲乙兩隊合做2天,再由乙隊單獨做,這樣也正好在規(guī)定的時間內(nèi)完成。完成這一項工程計劃用多少時間(天)?
這道題目內(nèi)容比例1更復(fù)雜。在指導(dǎo)學(xué)生處理這樣復(fù)雜的應(yīng)用題時,首先要把“甲乙先合做2天”改成“甲乙分別單獨做2天”,而“其余的又是乙隊單獨做”。這樣條件可以變換成“乙隊在計劃規(guī)定時間內(nèi)單獨做,甲隊接著單獨做2天才能完成”。變換以后,就能夠得出新的數(shù)量關(guān)系,通過分析,可以發(fā)現(xiàn):甲隊2天的工作量等于乙隊3天的工作量。那么,單獨完成這項工程,乙隊用的時間是甲隊的3/2倍。再比較上述情況,可知單獨完成這項工程乙比甲多3天。找到了對應(yīng)數(shù)量關(guān)系,列式3÷(3/2-1)=6天。
二、順序相互顛倒
在小學(xué)數(shù)學(xué)中,有些關(guān)于分數(shù)問題的應(yīng)用題,只要把條件的順序顛倒一下,就比較容易地畫出線段圖,從而找到對應(yīng)數(shù)量關(guān)系。例如:
例3:某倉庫有一批面粉第一次運去2.8噸,第二次運去的比這批面粉的1/3少3/10噸。這樣,正好運去這批面粉的1/2。這批面粉原有多少噸?
由線段圖表示數(shù)量關(guān)系時,如何來表示3/10噸是個難點。依據(jù)題意,3/10噸是沒運去的,應(yīng)假設(shè)從運去的2.8噸里劃出3/10噸,且把3/10噸算在1/3之內(nèi)(如圖l所示)。但這樣處理比較費解,難度較大,易出差錯。在指導(dǎo)學(xué)生把條件變換成“第一次運去的比這批面粉的1/3少3/10噸,第二次運去2.8噸,就容易畫出圖2。這樣自然地把3/10噸包含在2.8噸里,數(shù)量關(guān)系沒有變,對應(yīng)關(guān)系更明顯。
列式:(2.8-3÷l0)÷(1÷2-l÷3)=15噸。
三、方向相互變換
在小學(xué)數(shù)學(xué)中,有些行程方面的應(yīng)用題,我們可以把條件中的“相向”運動改為“同向”運動,這樣就比較容易找到對應(yīng)關(guān)系,從而找到解題的突破口。例如:
例4(改編題):客車從甲地,貨車從乙地同時相對開出。6小時后客車距乙地還有全程的l/5,貨車距甲地46千米。已知客車每小時多行4千米。甲乙兩地相距多少千米?
根據(jù)題目所給的條件,剩余的路程分布在甲乙地兩端,難以建立對應(yīng)關(guān)系。讓學(xué)生把情節(jié)變換成“客車、貨車都從甲地出發(fā),同向而行”,這樣剩余的路程都在乙地那端。雖然“相向而行”改成了“同向而行”,貨車從“乙地”出發(fā)改成了從“甲地”出發(fā),但其他條件都沒有變化,不影響問題的結(jié)果。從圖3中看出:6小時客車比貨車多行(4×6)千米,(46-4×6)千米與全程的1/5對應(yīng)。
列式:(46-4×6)÷1/5=110(千米)。
四、順逆相互顛倒
有些應(yīng)用題,把“逆敘”條件變換為“順敘”條件,題意就顯得更明確,便于理解。例如(改編題):有一桶油,第一次取出45%,比第二次取出的油多6千克,這時桶里剩余的油相當(dāng)于前兩次取出油的3/17,全桶油重多少千克?
題中兩次取油量的比較,用逆向敘述比較難以理解,容易出錯。指導(dǎo)學(xué)生把比第二次取出的油多6千克”改變成“第二次取出的比第一次取出的油少6千克”變成順向敘述,文字雖然多了些,但意思明白多了,再把“桶里剩余的油相當(dāng)于前兩次取出油的3/17”轉(zhuǎn)化成“桶里剩余的油相當(dāng)于全桶的3/20”。統(tǒng)一用單位“l(fā)”表示全桶油的重量,可畫成圖4。
列式:6÷(3/20-(1-45%×2)]=120(千克)
總之,在小學(xué)數(shù)學(xué)各類應(yīng)用題的教學(xué)中,我們要善于改變材料中的條件,使學(xué)生比較容易地發(fā)現(xiàn)條件與條件之間的關(guān)系,從而找到解題的突破口,實現(xiàn)《課標(biāo)》提出的“內(nèi)容的組織要重視過程,處理好過程與結(jié)果的關(guān)系;要重視直觀,處理好直觀與抽象的關(guān)系;要重視直接經(jīng)驗,處理好直接經(jīng)驗與間接經(jīng)驗的關(guān)系”的要求。
【變換條件,理清數(shù)學(xué)解題思路】相關(guān)文章:
幼兒園大班數(shù)學(xué)《圖形的變換》教案01-10
幼兒園大班數(shù)學(xué)教案:圖形的變換02-14
數(shù)學(xué)課堂教學(xué)的新思路08-23
圖形的變換教學(xué)反思08-25
圖形的變換教學(xué)反思03-12
清理清查圖書自查報告01-03