- 相關推薦
談一下計算題的總復習
整數(shù)、小數(shù)和分數(shù)的四則計算及其四則混合運算是小學數(shù)學的重要內容,是提高解答應用題和幾何問題能力的基礎,直接影響著學生的智力和非智力因素的發(fā)展。復習計算部分的內容時,既要重視基礎知識與基本技能,又要重視綜合運用知識解題的靈活性,以便達到現(xiàn)行大綱關于“使學生能夠正確地進行整數(shù)、小數(shù)、分數(shù)的四則計算,對于其中一些基本的計算,要達到一定的熟練程度,并逐步做到計算方法合理、靈活”的教學要求,從小給學生打好數(shù)學的初步基礎,為提高未來人才素質奠定基礎。下面介紹一下我們進行計算部分總復習的做法與體會。
一、梳理歸納,溝通聯(lián)系,強化基礎
對學生平時分散學習的整數(shù)四則的口算、筆算和珠算,小數(shù)四則計算,分數(shù)四則計算以及整數(shù)、小數(shù)、分數(shù)四則混合運算的知識和技能,應當在總復習中進行整理和歸納,使知識系統(tǒng)化,幫助學生形成新的認知結構,以便加深理解和運用,進一步提高計算能力。例如:
1.四則的計算法則。整數(shù)、小數(shù)、分數(shù)加減法的計算法則的敘述雖然不同,但實質都是“計數(shù)單位相同才能直接相加減”。所謂“數(shù)位對齊,低位算起”、“小數(shù)點上下對齊”,都是為了把計數(shù)單位相同的數(shù)對齊;“把異分母分數(shù)化成同分母分數(shù),再加減”以及“分數(shù)和小數(shù)相加減要先把分數(shù)化成小數(shù)或把小數(shù)化成分數(shù)再加減”,也是為了統(tǒng)一計數(shù)單位,然后再加減。而小數(shù)乘、除法計算的關鍵是小數(shù)點的處理問題,即積中小數(shù)點的位置,小數(shù)作除數(shù)時除法的轉化(移動小數(shù)點轉化成整數(shù))和商的小數(shù)點的位置。分數(shù)乘法法則要與分數(shù)乘法的意義聯(lián)系起來理解;分數(shù)除法要轉化為分數(shù)乘法再計算。
筆算有明確的法則,固定的程序,清楚的表達式子,不僅可以明確地反映出計算結果,而且能完整地展示計算中的思維過程,清晰明了。通過復習要讓學生進一步弄清算理(是學生進行計算的依據(jù),是計算時的思維過程)和法則,掌握方法和要領,以減少計算錯誤,提高計算速度,降低計算難度。復習時應針對學生的薄弱處,精選題目,組織當堂訓練,以利于學生明確算理,掌握計算法則。
2.四則計算結果的判斷。根據(jù)四則運算的意義和規(guī)律進行估算,可判斷計算結果的合理性。例如:
整數(shù)除法中,估算商的位數(shù)與近似商。
小數(shù)乘法中,推知積中小數(shù)部分的位數(shù)。
加法計算中(加數(shù)不為0),和大于加數(shù)。
減法計算中(減數(shù)不為0),差與減數(shù)都小于被減數(shù)。
乘法計算中(因數(shù)不為0),一個因數(shù)小于1(純小數(shù)、真分數(shù))時,積小于另一個因數(shù);一個因數(shù)大于1時,積大于另一個因數(shù)。
除法計算中(被除數(shù)、除數(shù)都不為0),除數(shù)小于1(純小數(shù)、真分數(shù))時,商大于被除數(shù);除數(shù)大于1時,商小于被除數(shù)。
應用這些規(guī)律,可以迅速判斷計算結果的合理性。
3.四則計算中各部分之間的關系,是進行驗算和解簡易方程的依據(jù)。通過實例讓學生說出各部分之間的關系式,然后歸納概括成如下形式(便于記憶):附圖{圖}
4.運算定律和性質,不僅是四則計算法則的依據(jù),也是進行簡便運算的依據(jù)。小學階段學習的五個運算定律和兩個運算性質可歸納如下:附圖{圖}
這些運算定律和性質都有可逆性。
另外,五條基本性質的敘述及其主要用途如下:
商不變性質,用于簡算和小數(shù)除法計算法則的推導。
分數(shù)的基本性質,用于約分、通分。
小數(shù)的基本性質,用于小數(shù)的改寫與化簡。
比的基本性質,用于比的化簡和求比中的未知項。
比例的基本性質,用于檢驗比例、組比例和解比例。
5.小數(shù)、分數(shù)、百分數(shù)的互化方法可概括為右圖。附圖{圖}二、剖析范例,突出重點,提高能力
新大綱對計算能力的教學要求分為“會”、“比較熟練”、“熟練”三個層次,教師要正確把握大綱對不同計算內容所提出的不同層次的具體要求(如:小數(shù)四則筆算、簡單的口算及分數(shù)四則的筆算,要求比較熟練地計算;而簡單的分數(shù)四則口算和分數(shù)、小數(shù)四則混合運算只要求正確計算),通過有目的、有針對性的復習和訓練,使學生的計算能力切實達到大綱的要求。
1.明確算理,掌握方法和基本技能。
根據(jù)數(shù)學計算內容的特點,我們提出了“四過關”的教學目標:
第一,單步計算過關(一步的口算、筆算做到正確無誤);
第二,數(shù)的互化過關(整數(shù)、小數(shù)、分數(shù)、百分數(shù)之間的互化,包括整數(shù)與假分數(shù)、帶分數(shù)之間的互化,要正確、熟練);
第三,運算順序過關;
第四,算法的選擇過關(在進行簡算和分數(shù)、小數(shù)四則混合運算時,能根據(jù)具體情況靈活選用合理的方法進行計算)。
復習中,著重進行了以
下兩方面的訓練:
一是口算訓練。大綱指出,口算既是筆算、估算和簡算的基礎,也是計算能力的重要組成部分。口算的內容以各冊課本后附的口算題為重點,要突出重點。還要引導學生整理、熟記一些常用數(shù)據(jù),如:25×4、125×8等可湊整的相關算式;分母是2、4、5、8、10、20、25、50、100的最簡真分數(shù)化成小數(shù)、百分數(shù)的數(shù)值;3.14的1~10倍數(shù)等,以便提高計算效率。
二是基本題的訓練。對典型的基本題的訓練能促進學生觀察、分析與判斷能力的提高,從而強化對某一知識的理解,鞏固和提高解題技能。
例1判斷下面各題怎樣計算比較簡便:1263+98261-1970.5+───32333.4-1─────6.3×1────3────÷3374112334────÷2.62────×53──+1──+2──34585
例2想想運算順序,直接寫出得數(shù):226173+──-3+──────+───×──5577844111──×8÷──×82──-2──÷2───77333133───×2-1÷33÷───+───÷3344
例3判斷正誤(在題后括號里打“√”或“×”):72-0×72=72()12-12÷12=0()1×1÷1=0()5×3÷5×3=1()700÷200=7÷2=3……1()
上面例1重點復習與訓練學生湊整簡算的方法,分數(shù)與小數(shù)混合計算的一般規(guī)律。例2、例3重點復習與訓練四則運算的順序和1與0在計算中的特性。
例4在括號里填上適當?shù)臄?shù):()()5()1=───9=7───7──=5───53884()()10────=9───=8────555
例5計算:12142-───3──-1───415151571588───-3───-2───14──-3───-7───468369
這兩題是針對帶分數(shù)減法中分數(shù)部分不夠減需要“退位”計算這一難點設計的。例4中有把整數(shù)化成指定分母的假分數(shù),從帶分數(shù)整數(shù)部分退1、退2化成相應的假分數(shù)或帶分數(shù)的,這些基本技能都是計算整數(shù)減去一個分數(shù),帶分數(shù)減法中分數(shù)部分不夠減時必備的基礎。例5正是這類難點的強化訓練,通過這樣的實例訓練,可幫助學生克服難點,提高計算能力。
在分數(shù)四則計算中,對中差生提出了分數(shù)計算過程“三不省略”的要求,即通分過程不省略,數(shù)的互化過程不省略,除法變乘法一步不省略。這樣從實際出發(fā),減少了計算中的錯誤,提高了學生做題的效果和學好知識的信心。
例6計算:23112──×6×1──3──÷8÷3───382513424×1──÷146──÷5×3───6575333515÷──÷64──÷15×──÷───68572
分數(shù)與整數(shù)乘除混合運算中,往往因整數(shù)的變化失誤而導致計算錯誤。上面這道題采取對比練習,以辨別異同,深化理解,掌握方法。
2.解析范例,典型引路,提高能力。
在復習過程中,注意引導學生從整體上鞏固與掌握所學的計算知識與技能,并結合典型例題的解析予以綜合運用,靈活解題,從而提高計算能力。
要精心設計例題,每組例題都要有一二個側重點。搞好計算部分的總復習,關鍵在于每節(jié)課都能精選具有針對性與典型性的例題和習題,讓各類學生都能受益,調動起學生主動參與和積極性。
例1計算:
(1)1-1×(0÷1)+1÷111111
(2)──÷──-(───-───)÷───33333231
(3)───+0.25÷───×1-───343
(4)[1.9-19×(2-1.9)]÷1.9
(5)7.6÷[7.6+7.6×(7.6-7.6)]3121
(6)[───-0÷(───+───)]×1───47133
出示例題后,先讓學生審題,弄清運算順序(畫線、標號、定步驟),然后再動筆計算。主要復習和運用1和0的特性解題。教師巡視時,要抓住有代表性的錯解進行評析,以引起學生注意,及時反饋矯正。
例2計算:
(1)1018-10517÷13+17×107
(2)(4.32+12.7)-(1-0.74)
(3)108×[(113+37)÷(38-26÷2)
側重點是:第(1)題中的第二級運算(10517÷13和17×107)可以同時計算,注意商中的"0"和因數(shù)中的"0";第(2)題中的兩個小括號可以同時脫去;第(3)題中的第二個小括號內有兩級運算,要先算除法,可以同時算出兩個小括號內的得數(shù)。
例3計算:
317(1)6───-2───+5───4510135
(2)3───÷1───×1───356157
(3)8───-3───-2───46811311
(4)2───÷5───×3───÷2───65714513
(5)10÷───+2───×4-3───96411311
(6)3───×[1───-(───+───)]÷2───264123
側重點:第(1)、(2)題的運算順序是自左而右,而不是先算"+"、“×”,排除對“先乘、除,后加、減”的誤解;計算中一次通分、一次互化,可使計算簡便些。
第(3)題一次通分后,接著就需要解決被減數(shù)中分數(shù)部分不夠減的問題。
第(4)題仍要強化運算順序和一次同時互化(帶分數(shù)化假分數(shù))、轉化(除法變乘法)、約分計算的訓練。
第(5)、(6)題是分數(shù)四則混合運算,仍要強調:“①運算順序;②15分數(shù)與整數(shù)相乘的法則;③1───-───的轉化;④乘除一次轉化、66約簡”這樣兒點實際應用技能,進行相應的訓練。
分數(shù)、小數(shù)四則混合運算的算法選擇,是教學難點之一,應作為復習的重點?刹扇∵m當對比、集中解決的方式進行復習和訓練。進行時,先引導學生總結分數(shù)、小數(shù)四則混合運算的一般規(guī)律(方法):
第一,分數(shù)、小數(shù)加減混合運算,一般把分數(shù)化成小數(shù)計算比較方便;如果分數(shù)不能化成有限小數(shù),又不允許取近似值時,則把小數(shù)化成分數(shù)再計算。
第二,分數(shù)、小數(shù)乘除混合運算,一般先把小數(shù)化成分數(shù)后再計算(便于先約分);當把除法轉化成乘法后,一般的計算方法是:
若小數(shù)和分數(shù)的分母可約分,且能把分母約簡為1時,就直接約分計算;否則,把小數(shù)化成分數(shù)后再計算。
當把分數(shù)化成小數(shù)能使計算簡便時,就把分數(shù)化成小數(shù)再計算。
同時要強調三點:①運算順序正確;②盡量瞻前顧后(做一步看兩步),注意用簡便方法計算;③計算過程要一步一回頭,及時檢驗。然后結合實例,有重點、有針對性地指出一些應注意的地方。
例4先說說畫線部分選用什么算法,然后計算:
53(1)3───+4.5-1───64──────32
(2)3───-0.63+1───45───────23
(3)4───-2.4-1───55──────11
(4)4───×(4───÷2.2)58───────32
(5)4.8-(1───+2.4÷2───)43──────12
(6)5.2÷3───-1───×0.753─────────────51
(7)(9.3×───-7.3)÷2───64──────21
(8)(4-3.5×───)÷1───39──────
本例的重點是引導學生分析各題應選用什么算法較簡便(總結、驗證上述規(guī)律),側重于思維訓練,而不是讓學生盲目地計算。
例5計算:
325(1)2.4÷───+9.6×───-───4371
(2)[2-(11.9-8.4×1───)]÷1.33521
(3)[───+16.5÷(3───-1.75)]÷3───654831
(4)1.4÷[───×(7.5+3───×───)]25432315
(5)1───+[7.8-3───÷(2.4×───)]3516
本例可讓學生口述解法,教師板書,并瞻前顧后,隨時提問,啟發(fā)思考,述說算理,深化理解,掌握方法,提高技巧。
另外,要重視簡便運算,提高靈活、合理計算的能力。衡量學生計算能力的高低是看他能不能在正確計算的基礎上,根據(jù)題目的具體情況靈活地選擇合理的計算方法。有些式題沒有現(xiàn)成的簡算條件,應引導學生分析特征,找出隱蔽的簡算因素,在運算過程中靈活變換形式,進行簡算。
例6口述下面各題簡算過程的根據(jù)(不必算出得數(shù)):
(1)357+196=357+200-4=……
(2)2356-398=2356-400+2=……
(3)95.6-28.9-41.1=95.6-(28.9+41.1)=……6767
(4)1───+6.7+───=(1───+───)+6.7=……13131313323133
(5)7───-(4───+1───)-1───=7───-1───-(453535521───+1───)=……33
(6
)76×102-76×100+76×2=……
(7)375÷25=(375×4)÷(25×4)=……
(8)25×32×1.25=(25×4)×(1.25×8)=……11
(9)5.24×───+0.25×2.76=(5.24+2.76)×───=……441
(10)1÷9×42-15÷9=───×(42-15)=……9
例7計算(能簡算的要用簡便方法計算):
2(1)4.25×2───+67.5×0.24-2.4513
(2)2───×25.75+0.5×25───+25.752413
(3)3.25-(2.38÷1───+1.62×───)34
(4)11×11×11-11×11-1045
(5)(27×1───+6───×27)×1.2599
還要特別重視鞏固和提高學生列綜合算式(或方程)解方字題的能力。文字題是用文字形式敘述數(shù)量關系的計算題,它是聯(lián)結四則式題與應用題之間的橋梁。解文字題的關鍵是根據(jù)四則運算的意義及算式各部分的名稱、關系和文字題的表述方式,掌握思考方法,采用順推法、逆推法或縮句法,把文字題“釋放”成式題或方程。
例8(1)35個8減去7除350的商,差是多少?3
(2)72的───比72的45%多多少?451
(3)一個數(shù)的2.4倍的───比3.2的1───倍還多0.45,這個數(shù)124是多少?4
(4)一個數(shù)加上4───與6的倒數(shù)的積,和是2.8,求這個數(shù)。5
可逐一出示例題,啟發(fā)學生分析思考,說出算理,列出綜合算式或方程,重點是復習與訓練學生口述解法的根據(jù)(算理及相關知識),進行思維訓練,而不側重于計算。
總之,要通過對典型例題的解析,復習鞏固已學過的知識、技能和技巧,提高計算能力。內容上,要通過一例,復習一片,起到范例引路,舉一反三的作用。方法上,要改教師平時的“一言堂”為學生積極參與的“群言堂”,培養(yǎng)學生獨立思考、發(fā)表見解的能力。教師對例題要有針對性地指引思路,適當點撥,多讓學生動腦想、動口說、動手算。要注意總結基本規(guī)律,不平均用力,力求做到精講精練,講求實效。
三、強化訓練意識,優(yōu)化訓練方法
練習是使學生掌握知識、形成技能、發(fā)展智力的重要手段,練習主要在課內進行。計算部分的復習應以訓練為主,在練中悟理,在練中提高。要認真組織練習內容,明確目標導向,進行正確的認知操作和及時的信息反饋。要以思維訓練為中心,引導要新,思路要清,方法要活,訓練要實,讓學生在動態(tài)思維訓練中拓展思路,發(fā)展智力,提高能力。
四、培養(yǎng)良好的學習習慣,提高總復習效益
在總復習過程中,要注意培養(yǎng)學生良好的學習習慣。要求學生認真審題,看清題目中的每一個數(shù)據(jù)和運算符號,確定運算順序,選擇合理的運算方法,做到書寫工整、規(guī)范;在計算過程中,能口算的要堅持口算,不能口算的要清晰地寫出筆算的過程或簡算過程;計算結束后,要自覺地檢驗計算過程是否合理,計算方法是否簡便,計算結果是否正確。這樣,通過總復習的全過程,既鞏固了學生已獲得的知識與技能,提高了學生的計算能力,又培養(yǎng)了學生的科學觀念和精神,促進了學生個性品質的發(fā)展,有助于學生素質的全面提高。
【談一下計算題的總復習】相關文章:
談計算題的總復習08-05
初中數(shù)學總復習實踐談08-07
總復習08-16
畢業(yè)總復習08-15
數(shù)學總復習教案01-09
總復習教學反思08-26
談一下“減負”與“應試”08-12
數(shù)學總復習教案【薦】01-10
物理總復習教學反思08-22