八年級數(shù)學教案集錦(21篇)
作為一名為他人授業(yè)解惑的教育工作者,常常需要準備教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法。來參考自己需要的教案吧!下面是小編精心整理的八年級數(shù)學教案,歡迎閱讀,希望大家能夠喜歡。
八年級數(shù)學教案1
知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標:會用變化的量描述事物
情感目標:回用運動的觀點觀察事物,分析事物
重點:函數(shù)的概念
難點:函數(shù)的概念
教學媒體:多媒體電腦,計算器
教學說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學會確定自變量的取值范圍
教學設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
① 這張圖告訴我們哪些信息?
、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?
一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時,其長與面積;
(6) 等腰三角形的'底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習教材9頁練習
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級數(shù)學教案2
一、學習目標:
讓學生了解多項式公因式的意義,初步會用提公因式法分解因式
二、重點難點
重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來
難點:讓學生識別多項式的公因式.
三、合作學習:
公因式與提公因式法分解因式的概念.
三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的`形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。
四、精講精練
例1、將下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通過剛才的練習,下面大家互相交流,總結(jié)出找公因式的一般步驟.
首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4.
其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的
課堂練習
1.寫出下列多項式各項的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小結(jié):
總結(jié)出找公因式的一般步驟.:
首先找各項系數(shù)的大公約數(shù),其次找各項中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的
注意:(a-b)2=(b-a)2
六、作業(yè)
1、教科書習題
2、已知2x-y=1/3,xy=2,求2x4y3-x3y4
3、(-2)20xx+(-2)20xx
4、已知a-2b=2,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年級數(shù)學教案3
學習目標
1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。
2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學會運用平方差公式進行計算。
學習重難點重點:
平方差公式的推導及應用。
難點是對公式中a,b的廣泛含義的.理解及正確運用。
自學過程設(shè)計教學過程設(shè)計
看一看
認真閱讀教材,記住以下知識:
文字敘述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列練習:
①(m+n)(p+q)
、(a+b)(x-y)
、(2x+3y)(a-b)
、(a+2)(a-2)
⑤(3-x)(3+x)
、(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請寫出來。
_______________________________
1、下列計算對不對?若不對,請在橫線上寫出正確結(jié)果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、計算:50×49=_________、
應用探究
1、幾何解釋平方差公式
展示:邊長a的大正方形中有一個邊長為b的小正方形。
(1)請計算圖的陰影部分的面積(讓學生用正方形的面積公式計算)。
(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?
2、用平方差公式計算
(1)103×93
(2)×
拓展提高
1、閱讀題:
我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算、解答過程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!
2、仔細觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個位數(shù)、
八年級數(shù)學教案4
教學目標:
1、了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。
教學重點:
算術(shù)平方根的概念。
教學難點:
根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
教學過程
一、情境導入
請同學們欣賞本節(jié)導圖,并回答問題,學校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的'邊長應取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容。這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念。
二、導入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值。
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根。a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù)。規(guī)定:0的算術(shù)平方根是0。
也就是,在等式=a(x0)中,規(guī)定x = 。
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來。
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應的值。例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
。1)100;
。2)1;
三、練習
P69練習1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大。┧慕浦滴覀儗⒃谙鹿(jié)課探究。
五、小結(jié):
1、這節(jié)課學習了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根
六、課外作業(yè):
P75習題活動第1、2、3題
八年級數(shù)學教案5
教學目標
知識與技能
1.在給定的直角坐標系下,會根據(jù)坐標描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數(shù)形結(jié)合思想,培養(yǎng)學生的合作 交流能力;
2.通過由點確定坐標到根據(jù)坐標描點的轉(zhuǎn)化過程,進一步培養(yǎng)學生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數(shù)學的興趣。
教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學過程
第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)
在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關(guān)系,坐標軸上點的坐標有什么特點。
練習:指出下列 各點以及所在象限或坐標軸:
A(-1,-),B(3,-4),C( ,5),D(3,6),E (-,0),F(xiàn)(0, ), G(0,0) (抽取學生作答)
由點找坐標是已知點在直角坐標 系中的位置,根據(jù)這點在方格紙上對應的x軸、y軸上的數(shù)字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學生操作完畢后)
2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內(nèi)的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(,9),(2,7),(3,7),(4,7) ,(5,7),(,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的'圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?
(出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標系畫,要求每位同學獨立完成。
(學生描點、畫圖)
(拿出一位做對的學生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結(jié),全班交流)
本節(jié)課在復習上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內(nèi)容。
在例題和練習中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。
第五環(huán)節(jié) 布置作業(yè)
習題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學教案6
教學目標:
1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。
2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。
3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。
教學重點:
體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應用。
教學難點:
對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應用。
教學方法:
歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。
一般地對于n個數(shù)x1,……xn把(x1+x2+…xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。
如某公司要招工,測試內(nèi)容為數(shù)學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學,語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學、語文、外語三項測試成績的權(quán)。
中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。
眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)。
如3,2,3,5,3,4中3是眾數(shù)。
2、平均數(shù)、中位數(shù)和眾數(shù)的特征:
。1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。
。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。
。3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。
。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。
3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:
算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù)。
4、利用計算器求一組數(shù)據(jù)的`平均數(shù)。
利用科學計算器求平均數(shù)的方法計算平均數(shù)。
二、例題講解:
例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:
每人銷售件數(shù) 1800 510 250 210 150 120
人數(shù) 113532
。1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);
。2)假設(shè)銷售部負責人把每位營銷員的月銷售額定為平均數(shù),你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。
例2,某校規(guī)定:學生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學成績依次為90分,92分,85分,小亮這學期的數(shù)學總評成績是多少?
三、課堂練習:復習題A組
四、小結(jié):
1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。
2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。
五、作業(yè):復習題B組、C組(選做)
八年級數(shù)學教案7
一、教學目標
1.使學生理解并掌握分式的概念,了解有理式的概念;
2.使學生能夠求出分式有意義的條件;
3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉(zhuǎn)化的思想方法解決問題的能力;
4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識.
二、重點、難點、疑點及解決辦法
1.教學重點和難點 明確分式的分母不為零.
2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的.理解.
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式)
【新課】
1.分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結(jié)論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學生舉幾個分式的例子.
(3)學生小結(jié)分式的概念中應注意的問題.
①分母中含有字母.
、谌缤謹(shù)一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2.有理式的分類
請學生類比有理數(shù)的分類為有理式分類:
例1 當取何值時,下列分式有意義?
(1);
解:由分母得.
∴當時,原分式有意義.
(2);
解:由分母得.
∴當時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實數(shù)時,原分式都有意義.
(4).
解:由分母得.
∴當且時,原分式有意義.
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2 當取何值時,下列分式的值為零?
(1);
解:由分子得.
而當時,分母.
∴當時,原分式值為零.
小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當時,分母,分式無意義.
當時,分母.
∴當時,原分式值為零.
(3);
解:由分子得.
而當時,分母.
當時,分母.
∴當或時,原分式值都為零.
(4).
解:由分子得.
而當時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結(jié)、擴展
1.分式與分數(shù)的區(qū)別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習
1.填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2.教材P55中1、2、3.
八、布置作業(yè)
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設(shè)計
課題 例1
1.定義例2
2.有理式分類
八年級數(shù)學教案8
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎(chǔ),在本章中,學好了三角形的有關(guān)概念和性質(zhì),為進一步學習多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學生對三角形的有關(guān)知識有更為深刻的理解
本節(jié)課的教學重點:三角形中的相關(guān)概念和三角形三邊關(guān)系
本節(jié)課的教學難點:三角形的三邊關(guān)系
二、目標和目標解析
1.教學目標
(1)了解三角形中的相關(guān)概念,學會用符號語言表示三角形中的對應元素
(2)理解并且靈活應用三角形三邊關(guān)系
2.教學目標解析
(1)結(jié)合具體圖形,識三角形的概念及其基本元素
(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題
三、教學問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學生的和推理能力和合作學習的精神
四、教學過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義
師生活動:先讓學生分組討論,然后各小組派代表發(fā)言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.
【設(shè)計意圖】三角形概念的獲得,要讓學生經(jīng)歷其描述的過程,借此培養(yǎng)學生的語言表述能力,加深學生對三角形概念的理解
2.抽象概括,形成概念
動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形
【設(shè)計意圖】讓學生體會由抽象到具體的過程,培養(yǎng)學生的語言表述能力
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法
師生活動:結(jié)合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡
【設(shè)計意圖】進一步加深學生對三角形中相關(guān)元素的認知,并進一步熟悉幾何語言在學習中的`應用
3.概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內(nèi)角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角
師生活動:引導學生從概念出發(fā)進行思考,加深學生對三角形中相關(guān)元素概念的理解
4.拓廣延伸,探究分類
我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯(lián)系,強化學生對三角形按邊分類的理解
八年級數(shù)學教案9
教學目標:
1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。
2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。
3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。
教學重點:
體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的.意義和應用。
教學難點:
對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應用。
教學方法:
歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。
一般地對于n個數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。
如某公司要招工,測試內(nèi)容為數(shù)學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學,語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學、語文、外語三項測試成績的權(quán)。
中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。
眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)。
如3,2,3,5,3,4中3是眾數(shù)。
2、平均數(shù)、中位數(shù)和眾數(shù)的特征:
(1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。
(2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。
(3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。
(4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。
3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:
算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù)。
4、利用計算器求一組數(shù)據(jù)的平均數(shù)。
利用科學計算器求平均數(shù)的方法計算平均數(shù)。
二、例題講解:
某校規(guī)定:學生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學成績依次為90分,92分,85分,小亮這學期的數(shù)學總評成績是多少?
三、課堂練習:
復習題A組
四、小結(jié):
1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。
2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。
五、作業(yè):
復習題B組、C組(選做)
八年級數(shù)學教案10
教學目標
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學會應用.
2.難點:靈活地應用公式法進行因式分解.
3.關(guān)鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應用公式法分解因式的目的
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容.
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;
(2)(x+3y)2-(x-3y)2;
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;
(2)(m+4n)2;
(3)(a+b)2;
(4)(a-b)2.
【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2
(2)m2+8mn+16n2;
(3)a2+2ab+b2;
(4)a2-2ab+b2.
【學生活動】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學習,應用所學
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點撥】根據(jù)完全平方式的.定義,解此題時應分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應求出a的值,即可求出a3.
三、隨堂練習,鞏固深化
課本P170練習第1、2題.
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;
(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;
(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.
五、布置作業(yè),專題突破
八年級數(shù)學教案11
教學目標:
1.了解軸對稱圖形和兩個圖形關(guān)于某直線對稱的概念.
2.能識別簡單的軸對稱圖形及其對稱軸(直線),能找出兩個圖形關(guān)于某直線對稱的對稱點.
3.了解軸對稱圖形與兩個圖形關(guān)于某直線對稱的區(qū)別和聯(lián)系.
教學重點:
1、軸對稱圖形和兩個圖形成軸對稱的概念;
2、探索軸對稱的性質(zhì)。
教學難點:
1、能夠識別軸對稱圖形并找出它的對稱軸;
2、能運用其性質(zhì)解答簡單的幾何問題。
教學方法啟發(fā)誘導法
教具準備多媒體課件,剪刀,彩色紙
教學過程
一、情境導入
同學們,自古以來,對稱圖形被認為是和諧、美麗的.不論在自然界里還是在建筑中,不論在藝術(shù)中還是在科學中,甚至最普通的日常生活用品中,對稱圖形隨處可見,對稱給我們帶來了美的感受!而軸對稱是對稱中很重要的一種,今天就讓我們一起走進軸對稱世界,探索它的秘密吧!
我們先來看一下這節(jié)課的學習目標
1.了解軸對稱圖形和兩個圖形關(guān)于某直線對稱的概念.
2.能識別簡單的軸對稱圖形及其對稱軸,能找出兩個圖形關(guān)于某直線對稱的對稱點.
3.了解軸對稱圖形與兩個圖形關(guān)于某直線對稱的區(qū)別和聯(lián)系.
二、自主探究
【探究一】
(一)我們先來看幾幅圖片,觀察它們都有些什么共同特征.
1、它們都是對稱的.
2、它們沿著某條直線折疊后,直線兩旁的部分能完全重合。
(二)動畫展示蝴蝶的'折疊過程
。ㄈ┳鲆蛔
1.準備一張紙;
2.對折紙;
3.用鉛筆在紙上畫出你喜歡的圖案;
4.剪下你畫的圖案;
5.把紙打開鋪平,觀察所得的圖案,位于折痕兩側(cè)的部分有什么關(guān)系?
【答】能互相重合一模一樣是對稱的
從而得出軸對稱圖形的概念:
如果一個圖形沿著一條直線折疊,只限兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們說這個圖形關(guān)于這條直線對稱。
八年級數(shù)學教案12
教學目標:
知識目標:
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
能力目標:
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感目標:
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
教學重點:
掌握函數(shù)概念。
判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
能把實際問題抽象概括為函數(shù)問題。
教學難點:
理解函數(shù)的概念。
能把實際問題抽象概括為函數(shù)問題。
教學過程設(shè)計:
一、創(chuàng)設(shè)問題情境,導入新課
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?
『生』:應該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉(zhuǎn)動一圈高度就重復一次。
『師』:分析有道理。摩天輪上一點的'高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據(jù)圖5-1進行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。
二、新課學習
做一做
。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?
填寫下表:
層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。
。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
、儆嬎惝攆enbie為50,60,100時,相應的滑行距離S是多少?
、诮o定一個V值,你能求出相應的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?
『生』:相同點是:這三個問題中都研究了兩個變量。
不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習
書P152頁 隨堂練習1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數(shù)的值。
函數(shù)的三種表達式:
(1)圖象;
(2)表格;
(3)關(guān)系式。
五、探究活動
為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸元;超過10噸時,超過的部分按每噸元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?
(答案:Y=或)
六、課后作業(yè)
習題
八年級數(shù)學教案13
一、教材分析:
《正方形》這節(jié)課是九年義務教育人教版數(shù)學教材八年級下冊第十九章第二節(jié)的內(nèi)容?v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
(一)知識目標:
1、要求學生掌握正方形的概念及性質(zhì);
2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;
(二)能力目標:
1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
(三)情感目標:
1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風;
2、培養(yǎng)學生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;
3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
二、學生分析:
該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設(shè)計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
三、教法分析:
針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學方法。
通過學生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
四、學法分析:
本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
五、教學程序:
第一環(huán)節(jié):相關(guān)知識回顧
以提問的形式復習的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導學生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊長的.變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義
引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)
定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質(zhì)的學習,之后是進行例題講解。
3、例題講解
求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達能力,讓學生的個性得到充分的展示
4、課堂練習
第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質(zhì),使他們充分認識到數(shù)學實質(zhì)是來源于生活并要服務于生活。
5、課堂小結(jié)
此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學生們應追求象正方形一樣方正的品質(zhì),從而要努力學習以豐富的知識充實自己,達到理想中的完美。
6、作業(yè)設(shè)計
作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關(guān)正方形的知識。
八年級數(shù)學教案14
教學內(nèi)容分析:
、 學習特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W習了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
、 對本節(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。
學生分析:
、艑W生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
、茖W生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學生的思維能力還不成熟,有待于提高。
教學目標:
、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學生的推理能力。
、乔楦袘B(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:
掌握正方形的性質(zhì)與判定,并進行簡單的推理。
難點:
探索正方形的判定,發(fā)展學生的推理能
教學方法:
類比與探究
教具準備:
可以活動的四邊形模型。
教學過程:
一、復習鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:
、倨叫兴倪呅、矩形,菱形各有哪些性質(zhì)?
②( ) 的四邊形是平行四邊形。( )的.平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。
【學生活動】
學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。
【教師活動】
評析學生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二、動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學生活動】
學生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題①:什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②:正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:
、(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③:正方形有那些性質(zhì)?
【學生活動】
小組討論,舉手搶答。
【教師活動】
表揚學生發(fā)言,板書學生發(fā)現(xiàn),㈡正方形 每一條對角線平分一組對角
八年級數(shù)學教案15
一、教學目標
1、理解分式的基本性質(zhì)。
2、會用分式的基本性質(zhì)將分式變形。
二、重點、難點
1、重點:理解分式的基本性質(zhì)。
2、難點:靈活應用分式的基本性質(zhì)將分式變形。
3、認知難點與突破方法
教學難點是靈活應用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習題的意圖分析
的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的`是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。
習題的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5。
四、課堂引入
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。
五、例題講解
P7例2.填空:
[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
P11例3.約分:
[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
八年級數(shù)學教案16
一、教材的地位和作用
現(xiàn)實生活中,等腰三角形的應用比比皆是、所以,利用“軸對稱”的知識,進一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅實的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結(jié)論的重要理論依據(jù)、
教學重點:
1、讓學生主動經(jīng)歷思考和探索的過程、
2、掌握等腰三角形性質(zhì)及其應用、
教學難點:等腰三角形性質(zhì)的理解和探究過程、
二、學情分析
本年級的學生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗,動手能力強,善于與同伴交流,這就為本節(jié)課的學習做好了知識、能力、情感方面的準備、不同層次的學生因為基礎(chǔ)不同,在學習中必然會出現(xiàn)相異構(gòu)想,這也將是我在教學過程中著重關(guān)注的一點、
三、目標分析
知識與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運用等腰三角形的性質(zhì)解決問題
過程與方法
1、通過觀察等腰三角形的對稱性,發(fā)展學生的形象思維、
2、探索等腰三角形的性質(zhì)時,經(jīng)歷了觀察、動手實踐、猜想、驗證等數(shù)學過程,積累數(shù)學活動經(jīng)驗,發(fā)展了學生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運用數(shù)學語言合乎邏輯的進行討論和質(zhì)疑,提高了數(shù)學語言表達能力、
情感態(tài)度價值觀:
1、通過情境創(chuàng)設(shè),使學生感受到等腰三角形就在自己的身邊,從而使學生認識到學習等腰三角形的必要性、
2、通過等腰三角形的性質(zhì)的歸納,使學生認識到科學結(jié)論的發(fā)現(xiàn),是一個不斷完善的過程,培養(yǎng)學生堅強的意志品質(zhì)、
3、通過小組合作,發(fā)展學生互幫互助的精神,體驗合作學習中的樂趣和成就感、
四、教法分析
根據(jù)學生已有的認知,采取了激疑引趣——猜想探究——應用體驗——建構(gòu)延伸的教學模式,并利用多媒體輔助教學、
設(shè)計意圖
同學們,我們在七年級已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學生明確:本學段的幾何圖形都是按一般的到特殊的順序研究的
通過學生描述等腰三角形在生活中的應用,讓學生感受到數(shù)學就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!
學情分析:
大部分學生會有自己的想法,根據(jù)軸對稱圖形的性質(zhì),利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學會利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學先畫圖,再依線條剪得、
在這個過程中,注重落實三維目標、讓學生在獲取新知的過程中更好的認識自我,建立自信、我不失時機的對學生給予鼓勵和表揚,使活動更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學生關(guān)注剪法的理性思考、
我設(shè)計了問題:你是如何想到的?為的是剖析學生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問題:
等腰三角形還有什么性質(zhì)?請?zhí)岢瞿愕牟孪耄炞C你的猜想?并填寫在學案上、
合作小組活動規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的.主發(fā)言人(其它同學可作補充);
3、小組探究出的結(jié)論是什么?
4、說明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、
學情分析:這個環(huán)節(jié)是本節(jié)課的重點,也是教學難點、盡管在教學過程中,因為學生的相異構(gòu)想,數(shù)學猜想的初始敘述不準確,甚至不正確,但我不會立即去糾正他們,而是讓同學們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學知識的形成過程,真正的體現(xiàn)以人為本的教學理念,努力創(chuàng)設(shè)和諧的教育教學的生態(tài)環(huán)境、
通過設(shè)置恰當?shù)膭邮謱嵺`活動,引導學生經(jīng)歷觀察、動手實踐、猜想、驗證等數(shù)學探究活動,這種探究的學習過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學要充分把握好“四讓”:能讓學生觀察的,盡量讓學生觀察;能讓學生思考的,盡量讓學生思考;能讓學生表達的,盡量讓學生表達;能讓學生作結(jié)論的,盡量讓學生作結(jié)論、
這種教學方式,把學習的過程真正還給學生,不怕學生說不好,不怕學生出問題,其實學生說不好的地方、學生出問題的地方都正是我們應該教的地方,是教學的切入點、著眼點、增長點、
(2)教師在這個過程中,充分聽取和參與學生的小組討論,對有困難的學生,及時指導、
鞏固知識
1、等腰三角形頂角為70°,它的另外兩個內(nèi)角的度數(shù)分別為________;
2、等腰三角形一個角為70°,它的另外兩個內(nèi)角的度數(shù)分別為_____;
3、等腰三角形一個角為100°,它的另外兩個內(nèi)角的度數(shù)分別為_____、
內(nèi)化知識
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識遷移
等邊三角形有什么特殊的性質(zhì)?簡單地敘述理由、
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點D,E在BC上,AD=AE,你能說明BD=EC?
由于學生之間存在知識基礎(chǔ)、經(jīng)驗和能力的差異,我為學生提供了層次分明的反饋練習、將練習從易到難,從簡到繁,以適應不同階段、不同層次的學生的需要、讓學生拾階而上,逐步掌握知識,使學困生達到簡單運用水平,中等生達到綜合運用水平,優(yōu)等生達到創(chuàng)建水平、
暢談收獲
總結(jié)活動情況,重在肯定與鼓勵、引導學生從本課學習中所得到的新知識,運用的數(shù)學思想方法,新舊知識的聯(lián)系等方面進行反思,提高學生自主建構(gòu)知識網(wǎng)絡(luò)、分析解決問題的能力、
幫助學生梳理知識,回顧探究過程中所用到的從特殊到一般的數(shù)學方法,啟發(fā)學生更深層次的思考,為學生的下一步學習做好鋪墊、
反思過程不僅是學生學習過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、
基礎(chǔ)性作業(yè):P65習題1、2、3、4
八年級數(shù)學教案17
一、教學目標
①經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學生獨立思考、集體協(xié)作的能力。
、诶斫庹匠ǖ乃憷恚l(fā)展有條理的思考及表達能力。
二、教學重點與難點
重點:整式除法的運算法則及其運用。
難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。
三、教學準備
卡片及多媒體課件。
四、教學設(shè)計
。ㄒ唬┣榫骋
教科書第161頁問題:木星的質(zhì)量約為×1024噸,地球的質(zhì)量約為×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點研究算式(×1024)÷(×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。
注:教科書從實際問題引入單項式的'除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數(shù)學與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。
。ǘ┨骄啃轮
。1)計算(×1024)÷(×1021),說說你計算的根據(jù)是什么?
。2)你能利用(1)中的方法計算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
。3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?
注:教師可以鼓勵學生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。
單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調(diào)的。
(三)歸納法則
單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注:通過總結(jié)法則,培養(yǎng)學生的概括能力,養(yǎng)成用數(shù)學語言表達自己想法的數(shù)學學習習慣。
(四)應用新知
例2計算:
。1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成。口述和板書都應注意展示法則的應用,計算過程要詳盡,使學生盡快熟悉法則。
注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現(xiàn)照看不全的情況,所以更應督促學生細心解答問題。
鞏固新知教科書第162頁練習1及練習2。
學生自己嘗試完成計算題,同桌交流。
注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學生良好的思維習慣和主動參與學習的習慣。
。ㄎ澹┳鳂I(yè)
1、必做題:教科書第164頁習題第1題;第2題。
2、選做題:教科書第164頁習題第8題
八年級數(shù)學教案18
一、教學目標:
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
2、會求一組數(shù)據(jù)的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數(shù)據(jù)的極差.
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的.折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習題分析
本節(jié)課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統(tǒng)計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。
八年級數(shù)學教案19
一、學習目標:
1.經(jīng)歷探索平方差公式的過程.
2.會推導平方差公式,并能運用公式進行簡單的運算.
二、重點難點
重點:平方差公式的推導和應用
難點:理解平方差公式的結(jié)構(gòu)特征,靈活應用平方差公式.
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20xx×1999 (2)998×1002
導入新課:計算下列多項式的'積.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.
即:(a+b)(a-b)=a2-b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:計算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
隨堂練習
計算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小結(jié):
(a+b)(a-b)=a2-b2
八年級數(shù)學教案20
學習目標:
1. 在同一直角坐標系中,感受點的坐標變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。
2. 通過坐標的變化探索新舊圖形之間的變化。
重點:
1. 對稱軸的對稱圖形,并且能寫出所得圖形各點的坐標。
2. 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點:
1. 理解并應用直角坐標與極坐標。
2. 解決一些簡單的問題。
學習過程:
第一課時
一、舊知回顧:
1. 平面直角坐標系定義:在平面內(nèi),兩條垂直且有公共端點的數(shù)軸組成平面直角坐標系。
2. 坐標平面內(nèi)點的坐標的表示方法是(x,y)。
3. 各象限點的.坐標的特征:
第一象限:x和y坐標都是正數(shù)。第二象限:x坐標為負數(shù),y坐標為正數(shù)。第三象限:x和y坐標都是負數(shù)。第四象限:x坐標為正數(shù),y坐標為負數(shù)。
二、新知檢索:
1. 在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。
三、典例分析:
例1、
(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、
(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2) 將魚的頂點的橫坐標不變,縱坐標變成原來的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同?
四、習題組訓練
在平面直角坐標系中,將點(0,0)、(2,4)、(2,0)和(4,4)連接形成一個圖案。
(1)將這四個點的縱坐標保持不變,橫坐標變成原來的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化?
(2)將縱坐標和橫坐標都增加3,所得到的圖形會發(fā)生怎樣的變化?
(3)將縱坐標和橫坐標都乘以2,所得到的圖形會發(fā)生怎樣的變化?
歸納得出:圖形坐標變化的規(guī)律
1、平移規(guī)律
2、圖形伸縮規(guī)律
第二課時
一、已學內(nèi)容回顧:
1、軸對稱圖形的定義:如果一個圖形能夠沿著某條軸翻折成重合的兩部分,那么這個圖形就是軸對稱圖形。
2、中心對稱圖形的定義:如果一個圖形繞著某個點旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個圖形就是中心對稱圖形。
二、新學內(nèi)容引入:
1、如下圖所示,左邊的魚和右邊的魚是關(guān)于y軸對稱的。
(1) 左邊的魚可以通過平移、壓縮或拉伸來得到右邊的魚嗎?
(2) 左邊魚和右邊魚的頂點坐標之間有怎樣的關(guān)系?
(3) 如果將右邊的魚沿著x軸正方向平移1個單位長度,然后通過不改變關(guān)于y軸對稱的條件,那么左邊的魚的頂點坐標會發(fā)生怎樣的變化?
三、典型例題解析:
1、如下圖所示,右邊的魚是通過何種變換得到左邊的魚的?
2、如果將右邊魚的橫坐標保持不變,縱坐標變成原來的一倍,繪制得到的圖形與原圖形之間有何不同?
3、如果將右邊魚的縱坐標和橫坐標都變成原來的一倍,所得到的圖形和原圖形之間有何不同?
四、習題組練習:
1、當坐標發(fā)生如下變化時,圖形會做出怎樣的變化?
1、已知點位移的矩陣:
① (x,y) → (x,y + 4)
、 (x,y) → (x,y - 2)
③ (x,y) → (1/2x,y)
、 (x,y) → (3x,y)
⑤ (x,y) → (x,1/2y)
⑥ (x,y) → (3x,3y)
2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫出一個與它形狀大小完全一樣的蝴蝶,并標出它們的各個頂點坐標。
3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對稱圖形,并標出相應端點的坐標。
4、簡要描繪圖示中楓葉圖案關(guān)于x軸對稱的軸對稱圖形。
學習筆記:
八年級數(shù)學教案21
一、學習目標:
1.使學生了解運用公式法分解因式的意義;
2.使學生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式.
難點:將單項式化為平方形式,再用平方差公式分解因式;
學習方法:歸納、概括、總結(jié)
三、合作學習
創(chuàng)設(shè)問題情境,引入新課
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的'形式.
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法.
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是
左邊是一個多項式,右邊是整式的乘積.大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式講解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精講精練
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
補充例題:判斷下列分解因式是否正確.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)?(a2-1).
五、課堂練習教科書練習
六、作業(yè)
1、教科書習題
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案12-09
八年級的數(shù)學教案15篇12-14
八年級下冊數(shù)學教案01-01
八年級上冊人教版數(shù)學教案02-27
八年級數(shù)學教案【推薦】12-04
八年級數(shù)學教案【熱】11-29
【熱】八年級數(shù)學教案12-07