- 相關(guān)推薦
高一數(shù)學(xué)教案設(shè)計
作為一名教師,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識。優(yōu)秀的教案都具備一些什么特點呢?以下是小編整理的高一數(shù)學(xué)教案設(shè)計,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)教案設(shè)計 篇1
第一課時 1.1.1柱、錐、臺、球的結(jié)構(gòu)特征(一)
教學(xué)要求:通過實物模型,觀察大量的空間圖形,認(rèn)識柱體、錐體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu).
教學(xué)重點:讓學(xué)生感受大量空間實物及模型,概括出柱體、錐體的結(jié)構(gòu)特征.
教學(xué)難點:柱、錐的結(jié)構(gòu)特征的概括.
教學(xué)過程:
一、新課導(dǎo)入:
1. 討論:經(jīng)典的建筑給人以美的享受,其中奧秘為何?世間萬物,為何千姿百態(tài)?
2. 提問:小學(xué)與初中在平面上研究過哪些幾何圖形?在空間范圍上研究過哪些?
3. 導(dǎo)入:進入高中,在必修②的第一、二章中,將繼續(xù)深入研究一些空間幾何圖形,即學(xué)習(xí)立體幾何,注意學(xué)習(xí)方法:直觀感知、操作確認(rèn)、思維辯證、度量計算.
二、講授新課:
1. 教學(xué)棱柱、棱錐的結(jié)構(gòu)特征:
、 提問:舉例生活中有哪些實例給我們以兩個面平行的形象?
、 討論:給一個長方體模型,經(jīng)過上、下兩個底面用刀垂直切,得到的幾何體有哪些公共特征?把這些幾何體用水平力推斜后,仍然有哪些公共特征?
、 定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫棱柱.
列舉生活中的棱柱實例(三棱鏡、方磚、六角螺帽).
結(jié)合圖形認(rèn)識:底面、側(cè)面、側(cè)棱、頂點、高、對角面、對角線.
、 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-ABCDE
、 討論:埃及金字塔具有什么幾何特征?
、 定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體叫棱錐.
結(jié)合圖形認(rèn)識:底面、側(cè)面、側(cè)棱、頂點、高. 討論:棱錐如何分類及表示?
、 討論:棱柱、棱錐分別具有一些什么幾何性質(zhì)?有什么共同的性質(zhì)?
棱柱:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形
棱錐:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
2. 教學(xué)圓柱、圓錐的結(jié)構(gòu)特征:
① 討論:圓柱、圓錐如何形成?
② 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓柱;以直角三角形的一條直角邊為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)所成的曲面所圍成的幾何體叫圓錐.
列舉生活中的棱柱實例 結(jié)合圖形認(rèn)識:底面、軸、側(cè)面、母線、高. 表示方法
③ 討論:棱柱與圓柱、棱柱與棱錐的共同特征? 柱體、錐體.
、 觀察書P2若干圖形,找出相應(yīng)幾何體; 舉例:生活中的柱體、錐體.
3. 小結(jié):幾何圖形;相關(guān)概念;相關(guān)性質(zhì);生活實例
三、鞏固練習(xí):1. 練習(xí):教材P7 1、2題.
2. 已知圓錐的軸截面等腰三角形的腰長為 5cm,面積為12cm,求圓錐的底面半徑.
3.已知圓柱的底面半徑為3cm,軸截面面積為24cm,求圓柱的母線長.
4.正四棱錐的底面積為46 ,側(cè)面等腰三角形面積為6 ,求正四棱錐側(cè)棱.
第二課時 1.1.1柱、錐、臺、球的結(jié)構(gòu)特征(二)
教學(xué)要求:通過實物模型,觀察大量的空間圖形,認(rèn)識臺體、球體及簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu).
教學(xué)重點:讓學(xué)生感受大量空間實物及模型,概括出臺體、球體的結(jié)構(gòu)特征.
教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備:
1. 結(jié)合棱柱、棱錐、圓柱、圓錐的幾何圖形,說出:定義、分類、表示、
2. 結(jié)合棱柱、棱錐、圓柱、圓錐的幾何圖形,說出各幾何體的一些幾何性質(zhì)?
二、講授新課:
1. 教學(xué)棱臺與圓臺的結(jié)構(gòu)特征:
① 討論:用一個平行于底面的平面去截柱體和錐體,所得幾何體有何特征?
② 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分叫做棱臺;用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分叫做圓臺.
列舉生活中的實例
結(jié)合圖形認(rèn)識:上下底面、側(cè)面、側(cè)棱(母線)、頂點、高.
討論:棱臺的'分類及表示? 圓臺的表示?圓臺可如何旋轉(zhuǎn)而得?
、 討論:棱臺、圓臺分別具有一些什么幾何性質(zhì)?
棱臺:兩底面所在平面互相平行;兩底面是對應(yīng)邊互相平行的相似多邊形;側(cè)面是梯形;側(cè)棱的延長線相交于一點.
圓臺:兩底面是兩個半徑不同的圓;軸截面是等腰梯形;任意兩條母線的延長線交于一點;母線長都相等.
、 討論:棱、圓與柱、錐、臺的組合得到6個幾何體. 棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐有什么關(guān)系? (以臺體的上底面變化為線索)
2.教學(xué)球體的結(jié)構(gòu)特征:
① 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體,叫球體.
列舉生活中的實例
結(jié)合圖形認(rèn)識:球心、半徑、直徑.
球的表示.
、 討論:球有一些什么幾何性質(zhì)?
③ 討論:球與圓柱、圓錐、圓臺有何關(guān)系?(旋轉(zhuǎn)體)
棱臺與棱柱、棱錐有什么共性?(多面體)
3. 教學(xué)簡單組合體的結(jié)構(gòu)特征:
、 討論:礦泉水塑料瓶由哪些幾何體構(gòu)成?燈管呢?
、 定義:由柱、錐、臺、球等幾何結(jié)構(gòu)特征組合的幾何體叫簡單組合體.
列舉生活中的實例
4. 練習(xí):圓錐底面半徑為1cm,高為 cm,其中有一個內(nèi)接正方體,求這個內(nèi)接正方體的棱長. (補充平行線分線段成比例定理)
5. 小結(jié):學(xué)習(xí)了柱、錐、臺、球的定義、表示;性質(zhì);分類.
三、鞏固練習(xí):
1. 練習(xí):書P8 A組 1~4題.
2. 已知長方體的長、寬、高之比為4∶3∶12,對角線長為26cm, 則長、寬、高分別為多少?
3. 棱臺的上、下底面積分別是25和81,高為4,求截得這棱臺的原棱錐的高
4. 若棱長均相等的三棱錐叫正四面體,求棱長為a的正四面體的高.
高一數(shù)學(xué)教案設(shè)計 篇2
第一教時
教材:向量
目的:要求學(xué)生掌握向量的意義、表示方法以及有關(guān)概念,并能作一個向量與已知向量相等,根據(jù)圖形判定向量是否平行、共線、相等。
過程:
一、 開場白:課本P93(略)
實例:老鼠由A向西北逃竄,貓在B處向東追去,
問:貓能否追到老鼠?(畫圖)
結(jié)論:貓的速度再快也沒用,因為方向錯了。
二、 提出課題:平面向量
1. 意義:既有大小又有方向的量叫向量。例:力、速度、加速度、沖量等
注意:1?數(shù)量與向量的區(qū)別:
數(shù)量只有大小,是一個代數(shù)量,可以進行代數(shù)運算、比較大小;
向量有方向,大小,雙重性,不能比較大小。
2?從19世紀(jì)末到20世紀(jì)初,向量就成為一套優(yōu)良通性的數(shù)學(xué)體系,用以研究空間性質(zhì)。
2. 向量的表示方法:
1?幾何表示法:點—射線
有向線段——具有一定方向的線段
有向線段的`三要素:起點、方向、長度
記作(注意起訖)
2?字母表示法: 可表示為 (印刷時用黑體字)
P95 例 用1cm表示5n mail(海里)
3. 模的概念:向量 的大小——長度稱為向量的模。
記作:| | 模是可以比較大小的
4. 兩個特殊的向量:
1?零向量——長度(模)為0的向量,記作 。 的方向是任意的。
注意 與0的區(qū)別
2?單位向量——長度(模)為1個單位長度的向量叫做單位向量。
例:溫度有零上零下之分,“溫度”是否向量?
答:不是。因為零上零下也只是大小之分。
例: 與 是否同一向量?
答:不是同一向量。
例:有幾個單位向量?單位向量的大小是否相等?單位向量是否都相等?
答:有無數(shù)個單位向量,單位向量大小相等,單位向量不一定相等。
三、 向量間的關(guān)系:
1. 平行向量:方向相同或相反的非零向量叫做平行向量。
記作: ∥ ∥
規(guī)定: 與任一向量平行
2. 相等向量:長度相等且方向相同的向量叫做相等向量。
記作: =
規(guī)定: =
任兩相等的非零向量都可用一有向線段表示,與起點無關(guān)。
3. 共線向量:任一組平行向量都可移到同一條直線上 ,
所以平行向量也叫共線向量。
= = =
例:(P95)略
變式一:與向量長度相等的向量有多少個?(11個)
變式二:是否存在與向量長度相等、方向相反的向量?(存在)
變式三:與向量共線的向量有哪些?( )
四、 小結(jié):
五、 作業(yè):P96 練習(xí) 習(xí)題5.1
高一數(shù)學(xué)教案設(shè)計 篇3
一、教學(xué)目標(biāo)
2、 過程與方法目標(biāo):通過讓學(xué)生探 究點、線、面之間的相互關(guān)系,掌握文字語言、符號語言、圖示語 言之間的相互轉(zhuǎn)化。
3、 情感、態(tài)度與價值目標(biāo):通過用集合論 的觀點和運動的觀點討論點、線、面、體之間的相互關(guān)系培養(yǎng)學(xué)生會從多角度,多方面觀察和分析問題,體會將理論知識和現(xiàn)實生活建立聯(lián)系的快樂,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點和難點
重點:點、線、面之間的相互關(guān)系,以及文字語言、符號語言、圖示語言之間的相互轉(zhuǎn)化。
難點:從集合的角度理解點、線、面之間的相互關(guān)系。
三、教學(xué)方法和教學(xué)手段
在上課前將問題用學(xué)案的形式發(fā)給各組學(xué)生,讓學(xué)生先在課下研究探討,在課上以小組為單位就學(xué)案中的問題展開討論并發(fā)表自己組的研究結(jié)果,并引導(dǎo)同學(xué)展開爭論,同時利用課件給 同學(xué)一個直觀的展示,然后得出結(jié)論。下附學(xué)生的學(xué)案
四、教學(xué)過程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖
課題引入 讓同學(xué)們觀察幾個幾何體,從感性上對幾何體有個初步的認(rèn)識,并總結(jié)出空間立體幾何研究的幾個基本元素。 學(xué)生觀察、討論、總結(jié),教師引導(dǎo)。 提高學(xué)生的學(xué)習(xí)興趣
新課講解
基礎(chǔ)知識
能力拓展
探索研究 一、構(gòu)成幾何體的基本元素。
點、線、面
二、從集合的角度解釋點、線、面、體之間的相互關(guān)系。
點是元素,直線是點的集合,平面是點的集合,直線是平面的子集。
三、從運動學(xué)的角度解釋點、線、面、體之間的相互關(guān)系。
1、 點運動成直線和曲線。
2、 直線有兩種運動方式:平行移動和繞點轉(zhuǎn)動。
3、 平行移動形成平面和曲面。
4、 繞點轉(zhuǎn)動形成平面和曲面。
5、 注意直線的兩種運動方式形成的曲面的區(qū)別。
6、 面運動成體。
四、點、線、面、之間的相互位置關(guān)系。
1、 點和線的位置關(guān)系。
點A
2、 點和面的位置關(guān)系。
3、 直線和直線的位置關(guān)系。
4 、 直線和平面的位置關(guān)系。
5、 平面和平面的位置關(guān)系。 通過對幾何體的觀察、討論由學(xué)生自己總結(jié)。
引領(lǐng)學(xué)生回憶元素、集合的相互關(guān)系,討論、歸納點、線、面之間的相互關(guān)系。
通過課件演示及學(xué)生的討論,得出從 運動學(xué)的角度發(fā)現(xiàn)點、線、面之間的相互關(guān)系。
引導(dǎo)學(xué)生由生活中的實際例子總結(jié)出點、線、面之間的相互位置關(guān)系,讓學(xué)生有個感性認(rèn)識。 培養(yǎng)學(xué)生的觀察能力。
培養(yǎng)學(xué)生將所學(xué)知識建立相互聯(lián)系的能力。
讓學(xué)生在觀察中發(fā)現(xiàn)點、線、面之間的相互運動規(guī)律,為以后學(xué)習(xí)幾何體奠定基礎(chǔ)。
培養(yǎng)學(xué)生將學(xué)習(xí)聯(lián)系實際的習(xí)慣,鍛煉學(xué)生由感性認(rèn)識上升為理性知識的能力。
課堂小結(jié) 1、 學(xué)習(xí)了構(gòu)成幾何體的基本元素。
2、 掌握了點、線、面之間的相互關(guān)系。
3、 了解了點、線、面之間的相互的位置關(guān)系。 由學(xué)生總結(jié)歸納。 培養(yǎng)學(xué)生總結(jié)、歸納、反思的'學(xué)習(xí)習(xí)慣。
課后作業(yè) 試著畫出點、線、面之間的幾種位置關(guān)系。 學(xué)生課后研究完成。 檢驗學(xué)生上課的聽課效果及觀察能力。
附:1.1.1構(gòu)成空間幾何體的基本元素學(xué)案
(一)、基礎(chǔ)知識
1、 幾何體:________________________________________________________________
2、 長方體:________________________________ ___________________________ _____
3、 長方體的面:____________________________________________________________
4、 長方體的棱: ____________________________________________________________
5、 長方體的頂點:__________________________________________________________
6、 構(gòu)成幾何體的基本元素:__________________________________________________
7、 你能說出構(gòu)成幾何體的 幾個基本元素之間的關(guān)系嗎?
(二)、能力拓展
1、 如果點做連續(xù)運動,運動出來的軌跡可能是______________________ 因此點是立體幾何中的最基本的元素,如果點運動的方向不變,則運動的軌跡是_____________ 如果點運動的軌跡改變,則運動的軌跡是________ ____ 試舉幾個日常生活中點運動成線的例子___ ________________________________
2、 在空間中你認(rèn)為直線有幾種運動方式_______________________________________分別形成_______________________________________________________你能舉幾個日常生活中的例子嗎?
3、 你知道直線和線段的區(qū)別嗎?_______________________________________如果是線段做上述運動,結(jié)果如何?_______________________________________.現(xiàn)在你能總結(jié)出平面和面的區(qū)別嗎?______________________________________________
(三)、探索與研究
1、 構(gòu)成幾何體的基本元素是_________,__________,____________.
2、 點和線能有幾種位置關(guān)系_________________________你能畫圖說明嗎?
3、 點和平面能有幾種位置關(guān)系_______________________你能畫圖說明嗎?
4、 直線和直線能有幾種位置關(guān)系________________________你能畫圖說明嗎?
高一數(shù)學(xué)教案設(shè)計 篇4
教學(xué)目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2))能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。
課 型:新授課
教學(xué)重點:集合的交集與并集的概念;
教學(xué)難點:集合的交集與并集 “是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
一、引入課題
我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、新課教學(xué)
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Unin)
記作:A∪B讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個元素)。
例題1求集合A與B的并集
、貯={6,8,10,12} B={3,6,9,12}
、贏={x|-1≤x≤2} B={x|0≤x≤3}
。ㄟ^度)問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersectin)。
記作:A∩B讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的.Venn圖表示
說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
③A={6,8,10,12} B={3,6,9,12}
、蹵={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說明:當(dāng)兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡”所給集合,搞清楚各自所含元素后,再進行運算。
4、集合基本運算的一些結(jié)論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
三、課堂練習(xí)(P13練習(xí))
四、歸納小結(jié)
五、作業(yè)布置
1、書面作業(yè):P13習(xí)題1.1,第6-12題
補充:
。1)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∩Z=A,B∩Z=B,A∩B=
。2)設(shè)A={奇數(shù)}、B={偶數(shù)},則A∪Z=Z,B∪Z=Z,A∪B=Z
2、提高內(nèi)容:
。1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,試求p、q;
。2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A B={-2,0,1},求p、q;A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且A B ={3,7},求B
高一數(shù)學(xué)教案設(shè)計 篇5
教學(xué)目標(biāo):
1、知識與技能目標(biāo):理解并掌握圓的標(biāo)準(zhǔn)方程,會根據(jù)不同條件求圓的標(biāo)準(zhǔn)方程,能從圓的標(biāo)準(zhǔn)方程熟練地寫出它的圓心坐標(biāo)與半徑。
2、過程與方法目標(biāo):通過對圓的標(biāo)準(zhǔn)方程的推導(dǎo)及應(yīng)用,滲透數(shù)形結(jié)合、待定系數(shù)法等數(shù)學(xué)思想方法,提高學(xué)生的觀察、比較、分析、概括等思維能力。
3、情感與價值觀目標(biāo):通過學(xué)生主動參與圓的相關(guān)知識的探討和幾何畫板在解與圓有關(guān)問題中的應(yīng)用,激發(fā)學(xué)生數(shù)學(xué)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神。
教學(xué)重點:
圓的標(biāo)準(zhǔn)方程的推導(dǎo)及應(yīng)用。
教學(xué)難點:
利用圓的幾何性質(zhì)求圓的標(biāo)準(zhǔn)方程。
教學(xué)方法:
本節(jié)課采用“誘思探索”的教學(xué)方法,借助學(xué)生已有的知識引出新知;在概念的形成與深化過程中,以一系列的問題為主線,采用討論式,引導(dǎo)學(xué)生主動探究,自己構(gòu)建新知識;通過層層深入的例題配置,使學(xué)生思路逐步開闊,提高解決問題的能力。
同時借助多媒體,增強教學(xué)的直觀性,有利于滲透數(shù)形結(jié)合的思想,同時增大課堂容量,提高課堂效率。
教學(xué)過程:
一、復(fù)習(xí)引入 :
1、 提問:初中平面幾何學(xué)習(xí)的哪些圖形?
初中平面幾何中所學(xué)是兩個方面的`知識:直線形的和曲線形的。在曲線形方面學(xué)習(xí)的是圓,學(xué)習(xí)解析幾何以來,已經(jīng)討論了直線方程,今天我們來研究最簡單、最完美的曲線圓的方程。
2、提問:具有什么性質(zhì)的點的軌跡是圓?
強調(diào)確定一個圓需要的的條件為:圓心與半徑,它們分別確定了圓的位置與大小,
二、概念的形成:
1、讓學(xué)生根據(jù)顯示在屏幕上的圓自己探究圓的方程。
教師演示圓的形成過程,讓學(xué)生自己探究圓的方程,教師巡視,加強對學(xué)生的個別指導(dǎo),由學(xué)生講解思路,根據(jù)學(xué)生的回答,教師展示學(xué)生的想法,將兩種解法同時顯示在屏幕上,方便學(xué)生對比。
學(xué)生通常會有兩種解法:
解法1:(圓心不在坐標(biāo)原點)設(shè)M(x,y)是一動點,點M在該圓上的充要條件是|CM|=r。由兩點間的距離公式,得
=r。
兩邊平方,得
(x-a)2+(y-b)2=r2。
解法2:(圓心在坐標(biāo)原點)設(shè)M(x,y)是一動點,點M在該圓上的充要條件是|CM|=r。由兩點間的距離公式,得
=r
兩邊平方,得
x2+y2=r2
若學(xué)生只有一種做法,教師可引導(dǎo)學(xué)生建立不同的坐標(biāo)系,有自己發(fā)現(xiàn)另一個方程。
2、圓的標(biāo)準(zhǔn)方程:(x-a)2+(y-b)2=r2
當(dāng)a=b=0時,方程為x2+y2=r2
三、 概念深化:
歸納圓的標(biāo)準(zhǔn)方程的特點:
、賵A的標(biāo)準(zhǔn)方程是一個二元二次方程;
、趫A的標(biāo)準(zhǔn)方程由三個獨立的條件a、b、r決定;
、蹐A的標(biāo)準(zhǔn)方程給出了圓心的坐標(biāo)和半徑。
四、 應(yīng)用舉例:
練習(xí)1 104頁練習(xí)8-9 1、2(學(xué)生口答)
練習(xí)2 說出方程 (x+m)2+ (y+n)2=a2的圓心與半徑。
例1 、根據(jù)下列條件,求圓的方程:
(1)圓心在點C(-2,1),并且過點A(2,-2);
(2)圓心在點C(1,3),并且與直線3x-4y –6=0相切;
(3)過點A(2,3),B(4,9),以線段AB為直徑。
分析探求:讓學(xué)生說出如何作出這些圓,教師用幾何畫板做圖,幫助學(xué)生理清解題思路,由學(xué)生自己解答,并通過幾何畫板來驗證。
例2、 求過點A(0,1),B(2,1)且半徑為 的圓的方程。
分析探求:鼓勵學(xué)生一題多解,先讓學(xué)生自己求解,再相互討論、交流、補充,最后教師將學(xué)生的想法用多媒體進行展示。
思路一:利用待定系數(shù)法設(shè)方程為 (x-a) 2 + (y-b) 2 = 5,將兩點坐標(biāo)代入,列方程組,求得a,b,再代入圓的方程。
思路二:利用圓心在圓上兩點的垂直平分線上這一性質(zhì),利用待定系數(shù)法設(shè)方程為 (x-1) 2 + (y-b) 2 = 5,將一點坐標(biāo)代入,列方程,求得b,再代入圓的方程。
思路三:畫出圓的圖形,利用直角三角形,直接求圓心坐標(biāo)。
由例1、例2總結(jié)求圓的標(biāo)準(zhǔn)方程的方法。
五、反饋練習(xí):
104頁練習(xí)8-9 3(要求學(xué)生限時完成)
六、歸納總結(jié):
學(xué)生小結(jié)并相互補充,師生共同整理完善。
1、圓的標(biāo)準(zhǔn)方程的推導(dǎo);
2、圓的標(biāo)準(zhǔn)方程的形式;
3、求圓的方程的方法;
4、數(shù)學(xué)思想。
七、課后作業(yè):(略)
高一數(shù)學(xué)教案設(shè)計 篇6
一、教學(xué)目標(biāo)
【知識與技能】
理解函數(shù)的奇偶性及其幾何意義.
【過程與方法】
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題.
【情感態(tài)度與價值觀】
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
二、教學(xué)重難點
【重點】
函數(shù)的奇偶性及其幾何意義
【難點】
判斷函數(shù)的奇偶性的方法與格式.
三、教學(xué)過程
(一)導(dǎo)入新課
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
1 以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;
問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數(shù)y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點的坐標(biāo)有什么特殊的關(guān)系?
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;
(2)若點(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的'點,它們的縱坐標(biāo)一定相等.
(二)新課教學(xué)
1.函數(shù)的奇偶性定義
像上面實踐操作1中的圖象關(guān)于y軸對稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點對稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(even function)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學(xué)生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義
(2)奇函數(shù)(odd function)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).
2.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱.
3.典型例題
(1)判斷函數(shù)的奇偶性
例1.(教材P36例3)應(yīng)用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;
2 確定f(-x)與f(x)的關(guān)系;
3 作出相應(yīng)結(jié)論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).
(三)鞏固提高
1.教材P46習(xí)題1.3 B組每1題
解:(略)
說明:函數(shù)具有奇偶性的一個必要條件是,定義域關(guān)于原點對稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點對稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
2.利用函數(shù)的奇偶性補全函數(shù)的圖象
(教材P41思考題)
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱.
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).
(四)小結(jié)作業(yè)
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì).
課本P46 習(xí)題1.3(A組) 第9、10題, B組第2題.
四、板書設(shè)計
函數(shù)的奇偶性
一、偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱.
高一數(shù)學(xué)教案設(shè)計 篇7
教學(xué)目的:
。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
教學(xué)重點:集合的基本概念及表示方法
教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
內(nèi)容分析:
1、集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點是集合的基本概念
集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認(rèn)識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明
教學(xué)過程:
一、復(fù)習(xí)引入:
1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4、“物以類聚”,“人以群分”;
5、教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合、
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集 記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合 記作Z ,(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,(5)實數(shù)集:全體實數(shù)的集合 記作R
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復(fù)
。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對象能確定一個集合嗎?
。1)所有很大的實數(shù) (不確定)
。2)好心的人 (不確定)
。3)1,2,2,3,4,5、(有重復(fù))
3、設(shè)a,b是非零實數(shù),那么 可能取的.值組成集合的元素是_-2,0,2__
4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )
(A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
(1) 當(dāng)x∈N時, x∈G;
(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,又∵ 不一定都是整數(shù),∴ = 不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無序性
3、常用數(shù)集的定義及記法
高一數(shù)學(xué)教案設(shè)計二:函數(shù)的概念
【內(nèi)容與解析】
本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號 的理解,理解它關(guān)鍵就是能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過了集合并且初中對函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點是函數(shù)的概念,函數(shù)的三要素,所以解決重點的關(guān)鍵是通過實例領(lǐng)悟構(gòu)成函數(shù)的三個要素;會求一些簡單函數(shù)的定義域和值域。
【教學(xué)目標(biāo)與解析】
1、教學(xué)目標(biāo)
。1)理解函數(shù)的概念;
。2)了解區(qū)間的概念;
2、目標(biāo)解析
。1)理解函數(shù)的概念就是指能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號 的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是: h=130t-5t2.
1.1 這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2 高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有唯一的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個臭氧層空洞面積S與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問題4:上述三個實例中變量之間的關(guān)系都是函數(shù),那么從集合與對應(yīng)的觀點分析,函數(shù)還可以怎樣定義?
4.1 在一個函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個集合分別叫什么名稱?
4.2 在從集合A到集合B的一個函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個函數(shù)由哪幾個部分組成?如果給定函數(shù)的定義域和對應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個函數(shù)相等的條件是什么?
【例題】:
例1 求下列函數(shù)的定義域:xxx
分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!
例2已知函數(shù)
分析:理解函數(shù)f(x)的意義
例3 下列函數(shù)中哪個與函數(shù) 相等?
例4 在下列各組函數(shù)中 與 是否相等?為什么?
分析:
。1)兩個函數(shù)相等,要求定義域和對應(yīng)關(guān)系都一致;
。2)用x還是用其它字母來表示自變量對函數(shù)實質(zhì)而言沒有影響.
【課堂目標(biāo)檢1測】
教科書第19頁1、2.
【課堂小結(jié)】
1、理解函數(shù)的定義,函數(shù)的三要素,會球簡單的函數(shù)的定義域和函數(shù)值;
2、理解區(qū)間是表示數(shù)集的一種方法,會把不等式轉(zhuǎn)化為區(qū)間。
高一數(shù)學(xué)教案設(shè)計 篇8
教學(xué)目的:要求學(xué)生初步理解集合的概念,理解元素與集合間的關(guān)系,掌握集合的表示法,知道常用數(shù)集及其記法.
教學(xué)重難點:
1、元素與集合間的關(guān)系
2、集合的表示法
教學(xué)過程:
一、 集合的概念
實例引入:
、 1~20以內(nèi)的所有質(zhì)數(shù);
、 我國從1991~20xx的13年內(nèi)所發(fā)射的所有人造衛(wèi)星;
⑶ 金星汽車廠20xx年生產(chǎn)的所有汽車;
、 20xx年1月1日之前與我國建立外交關(guān)系的所有國家;
⑸ 所有的正方形;
、 黃圖盛中學(xué)20xx年9月入學(xué)的高一學(xué)生全體.
結(jié)論:一般地,我們把研究對象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡稱集.
二、 集合元素的特征
。1)確定性:設(shè)A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立.
。2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.
。3)無序性:一般不考慮元素之間的順序,但在表示數(shù)列之類的特殊集合時,通常按照習(xí)慣的由小到大的數(shù)軸順序書寫
練習(xí):判斷下列各組對象能否構(gòu)成一個集合
、 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
、 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
、饰覈男『恿 ⑺方程x2+4=0的所有實數(shù)解
、毯眯牡娜 ⑼著名的數(shù)學(xué)家 ⑽方程x2+2x+1=0的解
三 、 集合相等
構(gòu)成兩個集合的元素一樣,就稱這兩個集合相等
四、 集合元素與集合的關(guān)系
集合元素與集合的關(guān)系用“屬于”和“不屬于”表示:
。1)如果a是集合A的元素,就說a屬于A,記作a∈A
。2)如果a不是集合A的元素,就說a不屬于A,記作a∈A
五、常用數(shù)集及其記法
非負整數(shù)集(或自然數(shù)集),記作N;
除0的非負整數(shù)集,也稱正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實數(shù)集,記作R.
練習(xí):(1)已知集合M={a,b,c}中的三個元素可構(gòu)成某一三角形的三條邊,那么此三角形一定不是( )
A直角三角形 B 銳角三角形 C鈍角三角形 D等腰三角形
。2)說出集合{1,2}與集合{x=1,y=2}的異同點?
六、集合的表示方式
。1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi);
(2)描述法:用集合所含元素的共同特征表示的方法.(具體方法)
例 1、 用列舉法表示下列集合:
(1)小于10的.所有自然數(shù)組成的集合;
。2)方程x2=x的所有實數(shù)根組成的集合;
。3)由1~20以內(nèi)的所有質(zhì)數(shù)組成。
例 2、 試分別用列舉法和描述法表示下列集合:
。1)由大于10小于20的的所有整數(shù)組成的集合;
(2)方程x2-2=2的所有實數(shù)根組成的集合.
注意:(1)描述法表示集合應(yīng)注意集合的代表元素
(2)只要不引起誤解集合的代表元素也可省略
七、小結(jié)
集合的概念、表示;集合元素與集合間的關(guān)系;常用數(shù)集的記法.
高一數(shù)學(xué)教案設(shè)計 篇9
學(xué)習(xí)目標(biāo)
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標(biāo)準(zhǔn)方程中的幾何意義
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預(yù)習(xí)檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程、
三、思維訓(xùn)練
1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設(shè)直線的斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的`漸進線方程是,則雙曲線的離心率等于=、
4、(理)設(shè)是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、
2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點,相應(yīng)的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
高一數(shù)學(xué)教案設(shè)計 篇10
一、學(xué)情分析
學(xué)生的年齡在15——17歲間,具有模仿力,容易沖動,表現(xiàn)欲較強,容易害羞等特點;中考的成績大都在400——430間,數(shù)學(xué)基礎(chǔ)水平較差;A(chǔ)運算、空間想象、語言表達能力不佳;現(xiàn)已經(jīng)接觸過棱柱,棱錐,棱臺;圓柱,圓錐、圓臺等幾何體;對這些幾何體的形狀不陌生;但不會畫圖,對直觀圖還不了解;將學(xué)生引入到如何繪出這些空間的幾何體,符合學(xué)生的好奇心,能激發(fā)他們的求知欲;同時通過引導(dǎo),激勵使他們勤于動手,進而達到使其易學(xué)、樂學(xué)的目的。
二、 教學(xué)目標(biāo)
1、 知識目標(biāo):用斜二測畫法畫簡單空間幾何體的直觀圖。
2、 能力目標(biāo):
(1)掌握斜二測畫法的規(guī)則,會用它畫簡單空間幾何體的直觀圖。
(2)能由空間幾何體的直觀圖還原空間幾何體。
3、 情感目標(biāo):倡導(dǎo)學(xué)生動手實踐,培養(yǎng)學(xué)生熱愛學(xué)習(xí)的情感。
三、教材分析 :
畫出空間幾何體的直觀圖是學(xué)生學(xué)好立體幾何的必要條件。今年的教材將直觀圖前置到三視圖之前,使學(xué)生一開始就能注意對幾何體的整體展示,為后面的學(xué)習(xí)打好基礎(chǔ);本節(jié)課主要是介紹了最常用的、直觀性好的斜二測畫法。而水平放置的平面圖形的直觀圖畫法,是畫空間幾何體直觀圖的`基礎(chǔ)。教學(xué)的重點是斜投影畫平面圖形直觀圖的方法,即斜二測畫法。教材給出了正六邊形、長方體、圓柱直觀圖畫法很適合學(xué)生閱讀。教學(xué)時可以適當(dāng)舉例,以突出畫法步驟為主,達到提高學(xué)生繪圖能力的目的。
1、 重點:用斜二測畫法畫直觀圖。2、空間幾何體的直觀圖畫法。 2、 難點:畫空間幾何體的直觀圖時,如何準(zhǔn)確畫點
四、 學(xué)法指導(dǎo):
在教師的啟發(fā)引導(dǎo)下,借助多媒體的直觀演示,讓學(xué)生討論,通過觀察分析→方法理解→動手練習(xí)→鞏固反饋來掌握直觀圖的畫法,讓學(xué)生在尋求解決問題方法的嘗試過程中獲得自信,以激發(fā)興趣。逐步讓學(xué)生學(xué)會系統(tǒng)思維,掌握由點到面分析問題的學(xué)習(xí)方法;通過在畫法學(xué)習(xí)時,學(xué)會抓住問題的關(guān)鍵是什么,逐步學(xué)會辯證思維,掌握全面考慮問題的學(xué)習(xí)方法;
五、教學(xué)方法 :
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,在教學(xué)中,創(chuàng)設(shè)問題情境,采用探索討論法進行教學(xué),學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性學(xué)習(xí)活動。
六、教學(xué)準(zhǔn)備:
多媒體PowerPoint課件, 長方體、直三棱柱、正棱錐模型,圓規(guī)、三角板等。
七,教學(xué)環(huán)節(jié):
1、 復(fù)習(xí)提問:棱柱,直棱柱,正棱柱,棱錐,正棱錐的定義
2、新課引入:什么是幾何體的直觀圖?(投影打出)
圍繞幾何體的直觀圖的概念讓學(xué)生觀察圖片比較孰優(yōu)孰劣:1. 圖片都是空間圖形在平面上的反映,通過對圖片的研究可以了解空間圖形的一些性質(zhì)和特征.2.中心投影雖然可以顯示空間圖形的直觀形象,但作圖較復(fù)雜,又不易度量.3.立體幾何中常用平行投影(斜投影)來畫空間圖形的直觀圖,這種畫法叫斜二測畫法.(投影展示)
3、投影規(guī)律(投影展示)
4、斜二測畫法的規(guī)則:(投影展示)
板書: 建系
(2)平行不變
。3)長度規(guī)則
提示:(1)棱柱、棱錐的直觀圖都是線段構(gòu)成。
(2)要畫線段關(guān)鍵是畫“點”
。3)直線的投影是直線。
要畫直觀圖。最重要的是畫出各個頂點
5學(xué)生練習(xí):用斜二測畫法畫下列圖形的直觀圖:
(1)邊長為2cm的正方形
(2)邊長為2cm的正三角形
提問:如何建系可使畫圖最容易?
6、學(xué)生口述用斜二測畫法畫下列圖形的直觀圖的步驟
7、學(xué)會畫平面圖形后,怎樣畫幾何體?
投影給出規(guī)則:(投影展示)
8、要求學(xué)生在剛才的基礎(chǔ)上用斜二測畫法畫下列圖形的直觀圖:
(1)棱長為2cm的正方體
(2)底邊長為2cm,高為2cm的正三棱錐
提示:平行于x軸和z軸的線段,在直觀圖中保持長度不變;
學(xué)生現(xiàn)練習(xí),教師后演示
9、用投影展示(1)的全過程
10、總結(jié)畫棱柱、棱錐的直觀圖大致可分以下幾個步驟:畫軸_“畫底面”_“長高” _成圖
11、學(xué)生再次回答斜二測畫法畫“底”的基本步驟和規(guī)則:
(1)建坐標(biāo)系,定水平面;
。2)與坐標(biāo)軸平行的線段保持平行;
(3)水平線段等長,豎直線段減半.
板書::“橫同,豎半, 45度 ”+“長高”
12、若 是圓柱、圓錐如何處理?
提示:圓周由點構(gòu)成——————投影展示圓的直觀圖畫法
說明:在實際畫水平放置的圓的直觀圖時,通常使用橢圓模版
八、作業(yè):
用斜二測畫法畫下列圖形:
(1)地邊長為4cm,為3cm的正四棱錐;
(2)棱長為3cm的正方體;
(3)長、寬、高、分別為5cm、4cm、3cm的長方體.
高一數(shù)學(xué)教案設(shè)計 篇11
一、概念認(rèn)識:零點是函數(shù) 的零點,但不是點,是滿足 的“ ”。
二、策略優(yōu)化:
、俣x法 ( 與 軸交點),
、诜匠谭 (解方程 ),
③構(gòu)造函數(shù)法,
三、運用體驗:
四、經(jīng)典訓(xùn)練:
例1: 是 的零點,若 ,則 的值滿足 .
【分析】函數(shù) 在 上是單調(diào)遞增的,這個函數(shù)有零點,這個零點是唯一的,根據(jù)函數(shù)是單調(diào)遞增性,在 上這個函數(shù)的函數(shù)值小于零,即 。
【考點】函數(shù)的應(yīng)用。
【點評】在定義域上單調(diào)的函數(shù)如果有零點,則只能有唯一的零點,并且以這個零點為分界點把定義域分成兩個區(qū)間,在其中一個區(qū)間內(nèi)函數(shù)值都大于零,在另一個區(qū)間內(nèi)函數(shù)值都小于零。
練習(xí):1.“ ”是“函數(shù) 在區(qū)間 上存在零點 ”的 .充分非必 要條件
例2已知函數(shù) 有零點,則 的取值范圍是___________.
練習(xí):若函數(shù) 在R上有兩個零點,則實數(shù)k的取值范圍為_____________
練習(xí):設(shè)函數(shù) ,記 ,若函數(shù) 至少存在一個零點,則實數(shù) 的取值范圍是 .
練習(xí):設(shè)函數(shù) ,若函數(shù) 在 上恰有兩個不同零點,則實數(shù)的 取值范圍是 .
例3:若方程 的解為 ,則不小于 的最小整數(shù)是 .5
例4:已知函數(shù) ,在區(qū)間 上有最大值4,最小值1,設(shè) .
(Ⅰ)求 的值;
(Ⅲ)方程 有三個不同的實數(shù)解,求實數(shù) 的.范圍.
解:(Ⅰ)(1) 當(dāng) 時, 上為增函數(shù)
故
當(dāng) 上為減函數(shù)
故
即 . .
(Ⅲ)方程 化為
,
令 , 則方程化為 ( )
∵方程 有三個不同的實數(shù)解,
∴由 的圖像知,
有兩個根 、 ,
且 或 ,
記
則 或 ∴
練習(xí):已知二次函數(shù) .
(1)若 ,試判斷函數(shù) 零點個數(shù);
(2) 若對 且 , ,試證明 ,使 成立;
解:(1)
當(dāng) 時 ,
函數(shù) 有一個零點;當(dāng) 時, ,函數(shù) 有兩個零點。
在 內(nèi)必有一個實根。即 ,使 成立。
五、課外拓展:
1.已知函數(shù) 的零點依次為a,b,c,則 .
A.a
2.已知函數(shù) .
3)記 .當(dāng) 時,函數(shù) 在區(qū)間 上有兩個零點,求實數(shù) 的取值范圍.
解:(III)依題得 ,則 .由 解得 ;由 解得 .
所以函數(shù) 在區(qū)間 為減函數(shù),在區(qū)間 為增函數(shù).
又因為函數(shù) 在區(qū)間 上有兩個零點,所以
解得 .所以 的取值范圍是 .
3.已知函數(shù) = 當(dāng)2
【解析】方程 =0的根為 ,即函數(shù) 的圖象與函數(shù) 的交點橫坐標(biāo)為 ,且 ,結(jié)合圖象,因為當(dāng) 時, ,此時對應(yīng)直線上 的點的橫坐標(biāo) ;當(dāng) 時, 對數(shù)函數(shù) 的圖象上點的橫坐標(biāo) ,直線 的圖象上點的橫坐標(biāo) ,故所求的 .
4.設(shè)函數(shù)
(Ⅰ)略;(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅲ)已知函數(shù) 有三個互不相同的零點0, ,且 .若對任意的 , 恒成立,求m的取值范圍.
解:(2) ,令 ,得到
因為 ,當(dāng)x變化時, 的變化情況如下表:
+ 0 - 0 +
極小值
極大值
在 和 內(nèi)減函數(shù),在 內(nèi)增函數(shù).
函數(shù) 在 處取得極大值 ,且 =
函數(shù) 在 處取得極小值 ,且 =
(3)解:由題設(shè),
所以方程 =0由兩個相異的實根 ,故 ,
且 ,解得
因為
若 ,而 ,不合題意
若 則對任意的 有
則 又 ,所以函數(shù) 在 的最小值為0,于是對任意的 , 恒成立的充要條件是 ,解得 綜上,m的取值范圍是
5.已知函數(shù) , ,設(shè) ,且函數(shù) 的零點均在區(qū)間 內(nèi),則 的最小值為 ▲ .
6.設(shè)函數(shù) , .
(Ⅲ)設(shè) 有兩個 零點 ,且 成等差數(shù)列,試探究 值的符號.
解:(3) 的符號為正,理由為:因為 有兩個零點 ,則有 ,兩式相減,得
即
于是
當(dāng) 時,令 ,則 ,
設(shè) ,則
所以 在 上為單調(diào)增函數(shù),而 ,所以 >0,
又因a>0, ,所以
同理,當(dāng) 時,同理可得
綜上所述 的符號為正。
高一數(shù)學(xué)教案設(shè)計 篇12
一、教學(xué)目標(biāo):
1.知識與技能:理解并掌握等比數(shù)列的性質(zhì)并且能夠初步應(yīng)用。
2.過程與方法:通過觀察、類比、猜測等推理方法,提高我們分析、綜合、抽象、
概括等邏輯思維能力。
3.情感態(tài)度價值觀:體會類比在研究新事物中的作用,了解知識間存在的共同規(guī)律。
二、重點:等比數(shù)列的性質(zhì)及其應(yīng)用。
難點:等比數(shù)列的性質(zhì)應(yīng)用。
三、教學(xué)過程。
同學(xué)們,我們已經(jīng)學(xué)習(xí)了等差數(shù)列,又學(xué)習(xí)了等比數(shù)列的基礎(chǔ)知識,今天我們繼續(xù)學(xué)習(xí)等比數(shù)列的性質(zhì)及應(yīng)用。我給大家發(fā)了導(dǎo)學(xué)稿,讓大家做了預(yù)習(xí),現(xiàn)在找同學(xué)對照下面的表格說說等差數(shù)列和等比數(shù)列的差別。
數(shù)列名稱 等差數(shù)列 等比數(shù)列
定義 一個數(shù)列,若從第二項起 每一項減去前一項之差都是同一個常數(shù),則這個數(shù)列是等差數(shù)列。 一個數(shù)列,若從第二項起 每一項與前一項之比都是同一個非零常數(shù),則這個數(shù)列是等比數(shù)列。
定義表達式 an-an-1=d (n≥2)
(q≠0)
通項公式證明過程及方法
an-an-1=d; an-1-an-2=d,
…a2-a1=d
an-an-1+ an-1-an-2+…+a2-a1=(n-1)d
an=a1+(n-1)*d
累加法 ; …….
an=a1q n-1
累乘法
通項公式 an=a1+(n-1)*d an=a1q n-1
多媒體投影(總結(jié)規(guī)律)
數(shù)列名稱 等差數(shù)列 等比數(shù)列
定 義 等比數(shù)列用“比”代替了等差數(shù)列中的“差”
定 義
表
達 式 an-an-1=d (n≥2)
通項公式證明
迭加法 迭乘法
通 項 公 式
加-乘
乘—乘方
通過觀察,同學(xué)們發(fā)現(xiàn):
等差數(shù)列中的 減法、加法、乘法,
等比數(shù)列中升級為 除法、乘法、乘方.
四、探究活動。
探究活動1:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來講解練習(xí)1;等差數(shù)列的性質(zhì)1;猜想等比數(shù)列的性質(zhì)1;性質(zhì)證明。
練習(xí)1 在等差數(shù)列{an}中,a2= -2,d=2,求a4=_____..(用一個公式計算) 解:a4= a2+(n-2)d=-2+(4-2)*2=2
等差數(shù)列的性質(zhì)1: 在等差數(shù)列{an}中, a n=am+(n-m)d.
猜想等比數(shù)列的性質(zhì)1 若{an}是公比為q的等比數(shù)列,則an=am*qn-m
性質(zhì)證明 右邊= am*qn-m= a1qm-1qn-m= a1qn-1=an=左邊
應(yīng)用 在等比數(shù)列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2*22=-8
探究活動2:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來講解練習(xí)2;等差數(shù)列的性質(zhì)2;猜想等比數(shù)列的性質(zhì)2;性質(zhì)證明。
練習(xí)2 在等差數(shù)列{an}中,a3+a4+a5+a6+a7=450,則a2+a8的值為 . 解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180
等差數(shù)列的性質(zhì)2: 在等差數(shù)列{an}中, 若m+n=p+q,則am+an=ap+aq 特別的,當(dāng)m=n時,2 an=ap+aq
猜想等比數(shù)列的性質(zhì)2 在等比數(shù)列{an} 中,若m+n=s+t則am*an=as*at 特別的,當(dāng)m=n時,an2=ap*aq
性質(zhì)證明 右邊=am*an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as*at=左邊 證明的方向:一般來說,由繁到簡
應(yīng)用 在等比數(shù)列{an}若an>0,a2a4+2a3a5+a4a6=36,則a3+a5=_____. 解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36
由于an>0,a3+a5>0,a3+a5=6
探究活動3:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來講解練習(xí)3;等差數(shù)列的性質(zhì)3;猜想等比數(shù)列的性質(zhì)3;性質(zhì)證明。
練習(xí)3 在等差數(shù)列{an}中,a30=10,a45=90,a60=_____. 解:a60=2* a45- a30=2×90-10=170
等差數(shù)列的性質(zhì)3: 若an-k,an,an+k是等差數(shù)列{an}中的三項, 則這些項構(gòu)成新的等差數(shù)列,且2an=an-k+an+k
an即時an-k,an,an+k的等差中項
猜想等比數(shù)列的性質(zhì)3 若an-k,an,an+k是等比數(shù)列{an}中的三項,則這些項構(gòu)成新的等比數(shù)列,且an2=an-k*an+k
an即時an-k,an,an+k的等比中項
性質(zhì)證明 右邊=an-k*an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1) 2t=an2左邊 證明的方向:由繁到簡
應(yīng)用 在等比數(shù)列 {an}中a30=10,a45=90,a60=_____.
解:a60= = =810
應(yīng)用 等比數(shù)列{an}中,a15=10, a45=90,a60=________. 解:
a30= = = 30
A60=
探究活動4:小組根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派學(xué)生代表上來講解練習(xí)4;等差數(shù)列的性質(zhì)4;猜想等比數(shù)列的性質(zhì)4;性質(zhì)證明。
練習(xí)4 設(shè)數(shù)列{an} 、{ bn} 都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5=_____. 解:a5+b5=2(a3+b3)-(a1+b1)=2*21-7=35
等差數(shù)列的性質(zhì)4: 設(shè)數(shù)列{an} 、{ bn} 是公差分別為d1、d2的等差數(shù)列,則數(shù)列{an+bn}是公差d1+d2的等差數(shù)列 兩個項數(shù)相同的等差數(shù)列的和任然是等差數(shù)列
猜想等比數(shù)列的性質(zhì)4 設(shè)數(shù)列{an} 、{ bn} 是公比分別為q1、q2的等比數(shù)列,則數(shù)列{an*bn}是公比為q1q2的等比數(shù)列 兩個項數(shù)相同的等比數(shù)列的`和比一定是等比數(shù)列,兩個項數(shù)相同的等比數(shù)列的積任然是等比數(shù)列。
性質(zhì)證明 證明:設(shè)數(shù)列{an}的首項是a1,公比為q1; {bn}的首項為b1,公比為q2,設(shè)cn=anbn那么數(shù)列{anbn} 的第n項與第n+1項分別為:
應(yīng)用 設(shè)數(shù)列{an} 、{ bn} 都是等比數(shù)列,若a1b1=7,a3b3=21,則a5b5=_____. 解:由題意可知{anbn}是等比數(shù)列,a3b3是a1b1;a5b5的等比中項。
由(a3b3)2= a1b1* a5b5 212= 7* a5b5 a5b5=63
(四個探究活動的設(shè)計充分尊重學(xué)生的主體地位,以學(xué)生的自主學(xué)習(xí),自主探究為主題,以教師的指導(dǎo)為輔,開展教學(xué)活動)
五、等比數(shù)列具有的單調(diào)性
(1)q;0,等比數(shù)列為 擺動 數(shù)列, 不具有 單調(diào)性
(2)q>0(舉例探討并填表)
a1 a1>0 a1;0
q的范圍 0 q=1 q>1 0 q=1 q>1
{an}的單調(diào)性 單調(diào)遞減 不具有單調(diào)性 單調(diào)遞增 單調(diào)遞增 不具有單調(diào)性 單調(diào)遞減
讓學(xué)生舉例說明,并查驗有多少學(xué)生填對。(真確評價)
六、課堂練習(xí):
1、已知各項均為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a7a8a9=10,則a4a5a6等于( ).
A. B.7 C.6 D.
解析:由已知得a32=5, a82=10,
∴a4a5a6=a53= = =5 .
答案:A
2、已知數(shù)列1,a1,a2,4是等比數(shù)列,則a1a2= .
答案:4
3、 +1與 -1兩數(shù)的等比中項是( ).
A.1 B.-1 C. D.±1
解析:根據(jù)等比中項的定義式去求。答案:選D
4、已知等比數(shù)列{an}的公比為正數(shù),且a3a9=2 ,a2=1,則a1等于( ).
A.2 B. C. D.
解析:∵a3a9= =2 ,∴ =q2=2,∵q>0,∴q= .故a1= = = .
答案:C
5練習(xí)題:三個數(shù)成等比數(shù)列,它們的和等于14,
它們的積等于64,求這三個數(shù)。
分析:若三個數(shù)成等差數(shù)列,則設(shè)這三個數(shù)為a-d,a,a+d.
由類比思想的應(yīng)用可得,若三個數(shù)成等比數(shù)列,則設(shè)這三個數(shù)
為: 根據(jù)題意
再由方程組可得:q=2 或
既這三個數(shù)為2,4,8或8,4,2。
七、小結(jié)
本節(jié)課通過觀察、類比、猜測等推理方法,研究等比數(shù)列的性質(zhì)及其應(yīng)用,從而培養(yǎng)和提高我們綜合運用分析、綜合、抽象、概括,邏輯思維解決問題的能力。
八、
§3.1.2等比數(shù)列的性質(zhì)及應(yīng)用
性質(zhì)一:若{an}是公比為q的等比數(shù)列,則an=am*qn-m
性質(zhì)二:在等比數(shù)列{an} 中,若m+n=s+t則am*an=as*at
性質(zhì)三:若an-k,an,an+k是等比數(shù)列{an}中的三項,則這些
項構(gòu)成新的等比數(shù)列,且 an2=an-k*an+k
性質(zhì)四:設(shè)數(shù)列{an} 、{ bn} 是公比分別為q1、q2的等比
數(shù)列,則數(shù)列{an*bn}是公比為q1q2的等比數(shù)列
板書設(shè)計
九、反思
高一數(shù)學(xué)教案設(shè)計 篇13
一、教學(xué)目標(biāo)
1.借助對圖片、實例的觀察,抽象概括出直線與平面垂直的定義,并能正確理解直線與平面垂直的定義。
2.通過直觀感知,操作確認(rèn),歸納直線與平面垂直判定的定理,并能運用判定定理證明一些空間位置關(guān)系的簡單命題,進一步培養(yǎng)學(xué)生的空間觀念。
3.讓學(xué)生親身經(jīng)歷數(shù)學(xué)研究的過程,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點、難點
1.教學(xué)重點:操作確認(rèn)并概括出直線與平面垂直的定義和判定定理。
2.教學(xué)難點:操作確認(rèn)并概括出直線與平面垂直的判定定理及初步運用。
三、課前準(zhǔn)備
1.教師準(zhǔn)備:教學(xué)課件
2.學(xué)生自備:
三角形紙片、鐵絲(代表直線)、紙板(代表平面)、三角板
四、教學(xué)過程設(shè)計
1.直線與平面垂直定義的建構(gòu)
(1)創(chuàng)設(shè)情境
、僬埻瑢W(xué)們觀察圖片,說出旗桿與地面、高樓的側(cè)棱與地面的位置有什么關(guān)系?
、谡埌炎约旱臄(shù)學(xué)書打開直立在桌面上,觀察書脊與桌面的位置有什么關(guān)系?
、壅垖ⅱ僦衅鞐U與地面的位置關(guān)系畫出相應(yīng)的幾何圖形。
(2)觀察歸納
①思考:一條直線與平面垂直時,這條直線與平面內(nèi)的直線有什么樣的位置關(guān)系?
、诙嗝襟w演示:旗桿與它在地面上影子的位置變化。
、蹥w納出直線與平面垂直的定義及相關(guān)概念。
定義:如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線l與平面α互相垂直,記作:l⊥α.
直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做垂足。
用符號語言表示為:
(3)辨析(完成下列練習(xí)):
、偃绻粭l直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線就與這個平面垂直。
②若a⊥α,b
α,則a⊥b。
在創(chuàng)設(shè)情境中,學(xué)生練習(xí)本上畫圖,教師針對學(xué)生出現(xiàn)的問題,如不直觀、不標(biāo)字母等加以強調(diào),并指出這就叫直線與平面垂直,引出課題。
在多媒體演示時,先展示動畫1使學(xué)生感受到旗桿AB所在直線與過點B的直線都垂直。再展示動畫2使學(xué)生明確旗桿AB所在直線與地面內(nèi)任意一條不過點B的直線B1C1也垂直,進而引導(dǎo)學(xué)生歸納出直線與平面垂直的定義。
在辨析問題中,解釋“無數(shù)”與“任何”的不同,并說明線面垂直的定義既是線面垂直的判定又是性質(zhì),線線垂直與線面垂直可以相互轉(zhuǎn)化,給出常用命題:
2.直線與平面垂直的判定定理的探究
(1)設(shè)置問題情境
提出問題:學(xué)校廣場上樹了一根新旗桿,現(xiàn)要檢驗它是否與地面垂直,你有什么好辦法?
(2)折紙試驗
如圖,請同學(xué)們拿出準(zhǔn)備好的一塊(任意)三角形的紙片,我們一起來做一個實驗:過△ABC的頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上,(BD、DC與桌面接觸).觀察并思考:
、僬酆跘D與桌面垂直嗎?
、谌绾畏鄄拍苁拐酆跘D與桌面所在的平面垂直?
、鄱嗝襟w演示翻折過程。
(3)歸納直線與平面垂直的判定定理
、偎伎迹河烧酆跘D⊥BC,翻折之后垂直關(guān)系,即AD⊥CD,AD⊥BD發(fā)生變化嗎?由此你能得到什么結(jié)論?
②歸納出直線與平面垂直的判定定理。
定理:一條直線與一個平面內(nèi)的'兩條相交直線都垂直,則該直線與此平面垂直。
用符號語言表示為:
在討論實際問題時,學(xué)生同桌合作進行試驗(將鐵絲當(dāng)旗桿,桌面當(dāng)?shù)孛?后交流方案,如用直角三角板量一次,量兩次等。教師不作點評,說明完成下面的折紙試驗后就有結(jié)論。
在折紙試驗中,學(xué)生會出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)這兩類學(xué)生進行交流,根據(jù)直線與平面垂直的定義分析“不垂直”的原因。學(xué)生再次折紙,進而探究直線與平面垂直的條件,經(jīng)過討論交流,使學(xué)生發(fā)現(xiàn)只要保證折痕AD是BC邊上的高,即AD⊥BC,翻折后折痕AD就與桌面垂直,再利用多媒體演示翻折過程,增強幾何直觀性。
在歸納直線與平面垂直的判定定理時,先讓學(xué)生敘述結(jié)論,不完善的地方教師引導(dǎo)、補充完整,并結(jié)合“兩條相交直線確定一個平面”的事實,簡要說明直線與平面垂直的判定定理。然后,學(xué)生試用圖形語言表述,練習(xí)本上畫圖,可能出現(xiàn)垂足與兩相交直線交點重合的情況(如圖),教師加以說明,同時給出符號語言表述。
在理解直線與平面垂直的判定定理時,強調(diào)“兩條”、“相交”缺一不可,并結(jié)合前面“檢驗旗桿與地面垂直”問題再進行確認(rèn)。指出要判斷一條直線與一個平面是否垂直,取決于在這個平面內(nèi)能否找到兩條相交直線和已知直線垂直,這充分體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”相互轉(zhuǎn)化的數(shù)學(xué)思想。
3.直線與平面垂直的判定定理的初步應(yīng)用
(1)嘗試練習(xí):
求證:與三角形的兩條邊同時垂直的直線必與第三條邊垂直。
學(xué)生根據(jù)題意畫圖,將其轉(zhuǎn)化為幾何命題:不妨設(shè)
請三位同學(xué)板演,其余同學(xué)在練習(xí)本上完成,師生共同評析,明確運用線面垂直判定定理時的具體步驟,防止缺少條件,同時指出:這為證明“線線垂直”提供了一種方法。
(2)嘗試練習(xí):如圖,有一根旗桿AB高8m,它的頂端A掛有兩條長10m的繩子,拉緊繩子并把它的下端放在地面上的兩點(和旗桿腳不在同一條直線上)C、D。如果這兩點都和旗桿腳B的距離是6m,那么旗桿就和地面垂直.為什么?
本題需要通過計算得到線線垂直。學(xué)生練習(xí)本上完成后,對照課本P69例1,完善自己的解題步驟。
(3)嘗試練習(xí):如圖,已知a∥b,a⊥α,求證:b⊥α。
此題有一定難度,教師引導(dǎo)學(xué)生分析思路,可利用線面垂直的定義證,也可用判定定理證,提示輔助線的添法,學(xué)生練習(xí)本上完成,對照課本P69例2,完善自己的解題步驟。
4.總結(jié)反思
(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與平面垂直的方法?
(2)在證明直線與平面垂直時應(yīng)注意哪些問題?
(3)本節(jié)課你還有哪些問題?
學(xué)生發(fā)言,互相補充,教師點評,歸納出判斷直線與平面垂直的方法,給出框圖(投影展示),同時,說明本課蘊含著轉(zhuǎn)化、類比、歸納、猜想等數(shù)學(xué)思想方法,強調(diào)“平面化”是解決立體幾何問題的一般思路,并鼓勵學(xué)生反思,大膽質(zhì)疑,教師作好記錄,以便查缺補漏。
5.布置作業(yè)
(1)如圖,點P是平行四邊形ABCD所在平面外一點,O是對角線AC與BD的交點,且PA=PC,PB=PD.
求證:PO⊥平面ABCD
(2)課本P70 練習(xí)2
(3)探究:如圖,PA⊥圓O所在平面,AB是圓O的直徑,C是圓周上一點,則圖中有幾個直角三角形?由此你認(rèn)為三棱錐中最多有幾個直角三角形?四棱錐呢?
【板書設(shè)計】
教學(xué)設(shè)計說明
在這次新課程數(shù)學(xué)教學(xué)內(nèi)容中,立體幾何不論從教材編排還是教學(xué)要求上都發(fā)生了很大變化,因而,我在本節(jié)課的處理上也作了相應(yīng)調(diào)整,借助多媒體輔助教學(xué),采用“引導(dǎo)—探究式”教學(xué)方法。整個教學(xué)過程遵循“直觀感知—操作確認(rèn)—歸納總結(jié)”的認(rèn)知規(guī)律,注重發(fā)展學(xué)生的合情推理能力,降低幾何證明的難度,同時,加強空間觀念的培養(yǎng),注重知識產(chǎn)生的過程性,具體體現(xiàn)在以下幾個方面:
1.線面垂直的定義沒有直接給出,而是讓學(xué)生在對圖形、實例的觀察感知基礎(chǔ)上,借助動畫演示幫助學(xué)生概括得出,并通過辨析問題深化對定義的理解。這樣就避免了學(xué)生死記硬背概念,有利于理解數(shù)學(xué)概念的本質(zhì)。
2.線面垂直的判定定理不易發(fā)現(xiàn),在教學(xué)中,通過創(chuàng)設(shè)問題情境引起學(xué)生思考,安排折紙試驗,討論交流,給學(xué)生充分活動的時間與空間,幫助學(xué)生從自己的實踐中獲取知識。教師盡量少講,學(xué)生能做的事就讓他們自己去做,使學(xué)生更好的參與教學(xué)活動,展開思維,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣。
3.本節(jié)中教師不作例題示范,而是讓學(xué)生先嘗試完成,后講評明晰。為更好地鞏固判定定理,設(shè)置了有梯度的練習(xí),其中練習(xí)(1)是補充題,是判定定理的最簡單的運用。作業(yè)中增加了基礎(chǔ)題(第1題)和開放性題目(第3題),這樣,有助于培養(yǎng)學(xué)生的發(fā)散思維,使學(xué)生在不同的幾何體中體會線面垂直關(guān)系,發(fā)展學(xué)生的幾何直觀能力與一定的推理論證能力。同時,在教學(xué)中,始終注重訓(xùn)練學(xué)生準(zhǔn)確地進行三種語言(文字語言、圖形語言和符號語言)的轉(zhuǎn)換,培養(yǎng)運用圖形語言進行交流的能力。
4.以問題討論的方式進行小結(jié),培養(yǎng)學(xué)生反思的習(xí)慣,鼓勵學(xué)生對問題多質(zhì)疑、多概括。
高一數(shù)學(xué)教案設(shè)計 篇14
1.1.2集合的表示方法
一、教學(xué)目標(biāo):
1、集合的兩種表示方法(列舉法和特征性質(zhì)描述法).
2、能選擇適當(dāng)?shù)姆椒ㄕ_的表示一個集合.
重點:集合的表示方法。
難點:集合的特征性質(zhì)的概念,以及運用特征性質(zhì)描述法表示集合。
二、復(fù)習(xí)回顧:
1.集合中元素的特性:______________________________________.
2.常見的數(shù)集的簡寫符號:自然數(shù)集 整數(shù)集 正整數(shù)集
有理數(shù)集 實數(shù)集
三、知識預(yù)習(xí):
1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;
2. _______________________ ____________________________________________________叫做集合A的一個特征性質(zhì). ___________________________________________________________________________________
叫做特征性質(zhì)描述法,簡稱描述法.
說明:概念的理解和注意問題
1. 用列舉法表示集合時應(yīng)注意以下5點:
(1) 元素間用分隔號,
(2) 元素不重復(fù);
(3) 不考慮元素順序;
(4) 對于含有較多元素的集合,如果構(gòu)成該集合的元素有明顯規(guī)律,可用列舉法,但必須把元素間的規(guī)律顯示清楚后方能用省略號.
(5) 無限集有時也可用列舉法表示。
2. 用特征性質(zhì)描述法表示集合時應(yīng)注意以下6點;
(1) 寫清楚該集合中元素的`代號(字母或用字母表達的元素符號);
(2) 說明該集合中元素的性質(zhì);
(3) 不能出現(xiàn)未被說明的字母;
(4) 多層描述時,應(yīng)當(dāng)準(zhǔn)確使用且和或
(5) 所有描述的內(nèi)容都要寫在集合符號內(nèi);
(6) 用于描述的語句力求簡明,準(zhǔn)確.
四、典例分析
題型一 用列舉法表示下列集合
例1 用列舉法表示下列集合
(1)A={x N|0
變式訓(xùn)練:○1課本7頁練習(xí)A第1題。 ○2課本9頁習(xí)題A第3題。
題型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全體偶數(shù)構(gòu)成的集合 (3)在平面 內(nèi),線段AB的垂直平分線
變式訓(xùn)練:課本8頁練習(xí)A第2題、練習(xí)B第2題、9頁習(xí)題A第4題。
題型三 集合表示方法的靈活運用
例3 分別判斷下列各組集合是否為同一個集合:
(1)A={x|x+32} B={y|y+32}
(2) A={(1,2)} B={1,2}
(3) M={(x,y)|y= +1} N={y| y= +1}
變式訓(xùn)練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個數(shù)為( )
A 4 B 5 C 10 D 12
2、課本8頁練習(xí)B第1題、習(xí)題A第1題
例4 已知集合A={x|k -8x+16=0}只有一個元素,試求實數(shù)k的值,并用列舉法表示集合A.
作業(yè):課本第9頁A組第2題、B組第1、2題。
限時訓(xùn)練
1. 選擇
(1)集合 的另一種表示法是( B )
A. B. C. D.
(2) 由大于-3小于11的偶數(shù)所組成的集合是( D )
A. B.
C. D.
(3) 方程組 的解集是( D )
A. (5, 4) B. C. (-5, 4) D. (5,-4)
(4)集合M= (x,y)| xy0, x , y 是( D )
A. 第一象限內(nèi)的點集 B. 第三象限內(nèi)的點集
C. 第四象限內(nèi)的點集 D. 第二、四象限內(nèi)的點集
(5)設(shè)a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )
A. 1 B. -1 C. 2 D. -2
2. 填空
(1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.
(2)由平面直角坐標(biāo)系內(nèi)第二象限的點組成的集合為__ __.
(3)下面幾種表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正確表示方程組
的解集的是__○2__○5_______.
(4) 用列舉法表示下列集合:
A= =___{0,1,2}________________________;
B= =___{-2,-1,0,1,2}________________________;
C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知A= , B= , 則集合B=__{0,1,2}________.
3. 已知集合A= , 且-3 ,求實數(shù)a. (a= )
4. 已知集合A= .
(1) 若A中只有一個元素,求a的值;(a=0或a=1)
(2)若A中至少有一個元素,求a的取值范圍;(a1)
(3)若A中至多有一個元素,求a的取值范圍。(a=0或a1)
【高一數(shù)學(xué)教案設(shè)計】相關(guān)文章:
數(shù)學(xué)《面積》的教案設(shè)計06-08
高一語文上冊教案設(shè)計09-27
數(shù)學(xué)《認(rèn)識鐘表》教案設(shè)計04-01
數(shù)學(xué)《約分》教案設(shè)計優(yōu)秀12-11
小學(xué)數(shù)學(xué)教案設(shè)計05-30
數(shù)學(xué)圓認(rèn)識教案設(shè)計05-08
數(shù)學(xué)《連加、連減》教案設(shè)計03-25
(集合)小學(xué)數(shù)學(xué)教案設(shè)計06-14