国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>高中數(shù)學教案

高中數(shù)學教案

時間:2024-07-25 12:43:38 數(shù)學教案 我要投稿

[實用]高中數(shù)學教案15篇

  作為一名教師,往往需要進行教案編寫工作,編寫教案助于積累教學經(jīng)驗,不斷提高教學質量。教案要怎么寫呢?以下是小編為大家整理的高中數(shù)學教案,僅供參考,希望能夠幫助到大家。

[實用]高中數(shù)學教案15篇

高中數(shù)學教案1

  一、活動主題的提出

  根據(jù)新課改課程標準及高中數(shù)學教學要求,為切實實施素質教育,改革教學方式與方法,變教教材為用教材,有機地開展校本課程,培養(yǎng)學生的綜合實踐能力和創(chuàng)新能力,培養(yǎng)學生的探索精神和用數(shù)學的意識,以教材中的閱讀與思考為素教材,推進高中數(shù)學研究性學習的進程,對該問題進行研究,旨在為深化課堂教學內容,促進性自主研究和學習,從而探討高中數(shù)學研究性學習的實施辦法。

  二、活動的具體目標

  1、知識目標:通過集合中元素的個數(shù)問題的研究,探求有限集合中元素個數(shù)間的關系,比較幾個集合中元素個數(shù)的多少的方法。

  2、能力目標:能多方面、多角度、多層面來探究問題,運用知識來解決問題,培養(yǎng)學生的發(fā)散思維和創(chuàng)新思維能力。

  3、情感目標:學該課題的研究,激發(fā)學生的學習熱情和學習興趣,享受探索成功的樂趣,培養(yǎng)科學態(tài)度與科學精神。

  三、活動的實施過程、方式

  1、出示活動內容與思考的問題(5分鐘)

 。1)、學校小賣部進了兩次貨,第一次進的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進了幾種貨?回答兩次一共進了10(6+4)種,對嗎?應如何解答?有哪些方法?因此可以得出什么結論(集合中元素個數(shù)間的關系)?

 。2)、學校先舉辦了一次田徑運動會,某班有8名同學參賽,又舉辦了一次球類運動會,這個班有12名同學參賽,兩次運動會都參賽的有3人。兩次運動會中,這個班共有多少名同學參賽?應如何解答?由此解出以下結論(集合中元素個數(shù)間的關系)?又如:某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人是多少?應如何解答?

 。3)涉及三個及三個以上,集合的并、交問題,能用類似的結論嗎?應怎樣表達?如:學校開運動會,設。若參加一百米的同學有5人,參加二百米跑的同學有6人,參加四百米跑的同學有7人,參加一百、二百同學有2人,參加一百、四百的同學有3人,參加二百、四百的同學有5人,三項都參加的人有1人,求有多少人參賽?

 。4)設計比較集合與集合B=中元素的個數(shù)的多少的方法。

  2、活動分工及時間安排(25分鐘)

  全班以大組為單位(共四個大組)來研究以上4個問題。第一大組研究(1)問題,第二大組研究(2)個問題,第三大組研究(3)個問題,第四大組研究(4)個問題。要求每組由學生自行確定一位負責人,并由此同學組織具體活動,明確該同學是下步活動交流中心發(fā)言人。有余力的組可協(xié)助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導。

  3、活動交流(15分鐘)

  請每一小組中心發(fā)言人回答各自分配的問題,全班其它同學補充,教師引導學生概括,得出結論:

  列舉法

  問題(1)涉及的集合元素個數(shù)較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:

  圖解法

  當集合元素個數(shù)較少而不具體時,據(jù)題意畫出集合的韋恩圖,從而解決實際問題如問題(2),并歸納得出:這一結論。

  數(shù)形結合法

  利用集合間的關系,結合示意圖,據(jù)未知可設適當?shù)奈粗獢?shù),建立方程求解,如問題(2)中的第二個問題。設喜愛籃球運動但不喜愛乒乓球運動的人數(shù)為x,則兩項都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的'有[10-(15-x)]人,據(jù)題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運動但不喜愛乒乓球運動的有12人。

  歸納、猜想法

  通過對問題(3)的求解,并結合問題(1)、(2)的求解,歸納、猜想出:。

  概念派生法

  通過問題(4)的研究求解,大部分學生較易得出A,因此,由真子集的概念得出集合B的元素的個數(shù)少于集合A的元素的個數(shù)。這個結論是由概念的內涵派生出來的。

  “對應”法

  經(jīng)研究討論,同學中有“集合A的元素個數(shù)等于集合B的元素個數(shù)”的結論。少數(shù)同學運用“對應”思想:,顯然有此結論。這是一個多好的想法啊!

  四、活動評價

  充分運用高中數(shù)學子教材資源“閱讀與思考”,廣泛開展第二課堂活動,能很好地調動學生的學習興趣,能很好地開發(fā)學生的創(chuàng)造潛能,有助于學生探究能力和創(chuàng)新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進一步鞏固和拓展了所學知識;第二、培養(yǎng)了學生探究能力,很好地改變了學生的學習方式、方法;第三、增強了學生運用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當?shù)匾龑В瑢W生用知識的意識明顯增強,運用知識解決問題的能力明顯提高;第四、培養(yǎng)了學生的思維品質。通過問題(4)的研究,我們得出了不一樣的結論,但都有道理,學生向引發(fā)爭議,學生的批判性思維得到較好的發(fā)展。

  五、注意事項

  1、教師課題準備要充分。要認真鉆研材料;查閱相關資料或研究成果;作好周密的活動計劃。切忌無準備或準備不充分就上課。

  2、避免“活動研究課”上課學科化,要充分地讓學生自主的活動,不人為地牽制學生。

  3、積極引導學生搞好“交流——合作”環(huán)節(jié)的活動,充分聽取學生的意見,讓學生自己總結作法和研究成果,切忌教師包辦,強加于人。

  4、堅持引導學生寫好活動總結和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。

高中數(shù)學教案2

  教學目標

  理解數(shù)列的概念,掌握數(shù)列的運用

  教學重難點

  理解數(shù)列的概念,掌握數(shù)列的運用

  教學過程

  【知識點精講】

  1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)

  2、通項公式:數(shù)列的'第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。

  (通項公式不)

  3、數(shù)列的表示:

  (1)列舉法:如1,3,5,7,9……;

  (2)圖解法:由(n,an)點構成;

  (3)解析法:用通項公式表示,如an=2n+1

  (4)遞推法:用前n項的值與它相鄰的項之間的關系表示各項,如a1=1,an=1+2an-1

  4、數(shù)列分類:有窮數(shù)列,無窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動數(shù)列,常數(shù)數(shù)列;有界數(shù)列,xx數(shù)列

  5、任意數(shù)列{an}的前n項和的性質

高中數(shù)學教案3

  教材分析:

  前面已學習了向量的概念及向量的線性運算,這里引入一種新的向量運算——向量的數(shù)量積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運算與學生已有知識建立了聯(lián)系,又使學生看到向量數(shù)量積與向量模的大小及夾角有關,同時與前面的向量運算不同,其計算結果不是向量而是數(shù)量。

  在定義了數(shù)量積的概念后,進一步探究了兩個向量夾角對數(shù)量積符號的影響;然后由投影的概念得出了數(shù)量積的幾何意義;并由數(shù)量積的定義推導出一些數(shù)量積的重要性質;最后“探究”研究了運算律。

  教學目標:

  (一)知識與技能

  1.掌握數(shù)量積的定義、重要性質及運算律;

  2.能應用數(shù)量積的重要性質及運算律解決問題;

  3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運用平面向量數(shù)量積解決問題打好基礎。

  (二)過程與方法

  以物體受力做功為背景引入向量數(shù)量積的`概念,從數(shù)與形兩方面引導學生對向量數(shù)量積定義進行探究,通過例題分析,使學生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。

  (三)情感、態(tài)度與價值觀

  創(chuàng)設適當?shù)膯栴}情境,從物理學中“功”這個概念引入課題,開始就激發(fā)學生的學習興趣,讓學生容易切入課題,培養(yǎng)學生用數(shù)學的意識,加強數(shù)學與其它學科及生活實踐的聯(lián)系。

  教學重點:

  1.平面向量的數(shù)量積的定義;

  2.用平面向量的數(shù)量積表示向量的模及向量的夾角。

  教學難點:

  平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用。

  教學方法:

  啟發(fā)引導式

  教學過程:

  (一)提出問題,引入新課

  前面我們學習了平面向量的線性運算,包括向量的加法、減法、以及數(shù)乘運算,它們的運算結果都是向量,既然兩個向量可以進行加法、減法運算,我們自然會提出:兩個向量是否能進行“乘法”運算呢?如果能,運算結果又是什么呢?

  這讓我們聯(lián)想到物理中“功”的概念,即如果一個物體在力F的作用下產(chǎn)生位移s,F(xiàn)與s的夾角是θ,那么力F所做的功如何計算呢?

  我們知道:W=|F||s|cosθ,功是一個標量(數(shù)量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運算的結果呢,為此我們引入平面向量的數(shù)量積。

  (二)講授新課

  今天我們就來學習:(板書課題) 

高中數(shù)學教案4

  教學目標:

  1.進一步熟練掌握比較法證明不等式;

  2.了解作商比較法證明不等式;

  3.提高學生解題時應變能力.

  教學重點

  比較法的應用

  教學難點

  常見解題技巧

  教學方法啟發(fā)引導式

  教學活動

  (一)導入新課

 。ń處熁顒樱┙處煷虺鲎帜唬◤土曁釂枺埲煌瑢W回答問題,教師點評.

  (學生活動)思考問題,回答.

  [字幕]1.比較法證明不等式的步驟是怎樣的?

  2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?

  3.用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?

  [點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)

  設計意圖:復習鞏固已學知識,銜接新知識,引入本節(jié)課學習的內容.

 。ǘ┬抡n講授

  【嘗試探索,建立新知】

 。ń處熁顒樱┨岢鰡栴},引導學生研究解決問題,并點評.

  (學生活動)嘗試解決問題.

  [問題]

  1.化簡

  2.比較與()的大。

 。▽W生解答問題)

 。埸c評]

 、賳栴}1,我們采用了因式分解的方法進行簡化.

 、谕ㄟ^學習比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來比較兩個式子的大。

  設計意圖:啟發(fā)學生研究問題,建立新知,形成新的知識體系.

  【例題示范,學會應用】

 。ń處熁顒樱┙處煷虺鲎帜唬ɡ}),引導、啟發(fā)學生研究問題,井點評解題過程.

  (學生活動)分析,研究問題.

 。圩帜唬堇}3已知 a , b 是正數(shù),且,求證

 。鄯治觯菀李}目特點,作差后重新組項,采用因式分解來變形.

  證明:(見課本)

 。埸c評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.

 。埸c評]解這道題在判斷符號時用了分類討論,分類討論是重要的數(shù)學 思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.

  [字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度 m 行走,另一半時間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達指定地點.

  [分析]設從出發(fā)地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.

  解:(見課本)

 。埸c評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養(yǎng)自己學數(shù)學,用數(shù)學的良好品質.

  設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養(yǎng)學生應用知識解決實際問題的能力.

  【課堂練習】

 。ń處熁顒樱┙處煷虺鲎帜痪毩,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.

 。▽W生活動)在筆記本上完成練習,甲、乙兩位同學板演.

 。圩帜唬菥毩暎1.設,比較與的大。

  2.已知,求證

  設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節(jié)課堂教學.

  【分析歸納、小結解法】

 。ń處熁顒樱┓治鰵w納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.

 。▽W生活動)與教師一道小結,并記錄在筆記本上.

  1.比較法不僅是證明不等式的一種基本、重要的`方法,也是比較兩個式子大小的一種重要方法.

  2.對差式變形的常用方法有:配方法,通分法,因式分解法等.

  3.會用分類討論的方法確定差式的符號.

  4.利用不等式解決實際問題的解題步驟:①類比列方程解應用題的步驟.②分析題意,設未知數(shù),找出數(shù)量關系(函數(shù)關系,相等關系或不等關系),③列出函數(shù)關系、等式或不等式,④求解,作答.

  設計意圖:培養(yǎng)學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.

  (三)小結

 。ń處熁顒樱┙處熜〗Y本節(jié)課所學的知識及數(shù)學 思想與方法.

 。▽W生活動)與教師一道小結,并記錄筆記.

  本節(jié)課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.

  通過學習比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數(shù)學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續(xù)積累方法,培養(yǎng)用數(shù)學知識解決實際問題的能力.

  設計意圖:培養(yǎng)學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數(shù)學 思想方法.

 。ㄋ模┎贾米鳂I(yè)

  1.課本作業(yè):P17 7、8。

  2,思考題:已知,求證

  3.研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)

  設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯(lián)系實際,用數(shù)學解決實際問題,提高應用數(shù)學的能力.

 。ㄎ澹┱n后點評

  1.教學評價、反饋調節(jié)措施的構想:本節(jié)課采用啟發(fā)引導,講練結合的授課方式,發(fā)揮教師主導作用,體現(xiàn)學生主體地位,通過啟發(fā)誘導學生深入思考問題,解決問題,反饋學習信息,調節(jié)教學活動.

  2.教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節(jié)課在上節(jié)課的基礎上繼續(xù)學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用

高中數(shù)學教案5

  教學準備

  教學目標

  熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。

  掌握兩角和與差的'正、余弦公式,能用公式解決相關問題。

  教學重難點

  熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

  教學過程

  復習

  兩角差的余弦公式

  用- B代替B看看有什么結果?

高中數(shù)學教案6

  教學準備

  1.教學目標

  1、知識與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

  2、過程與方法:

  (1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;

 。2)了解構成函數(shù)的要素;

 。3)會求一些簡單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

  3、情感態(tài)度與價值觀,使學生感受到學習函數(shù)的必要性和重要性,激發(fā)學習的積極性.

  教學重點/難點

  重點:理解函數(shù)的模型化思想,用集合與對應的語言來刻畫函數(shù);

  難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學用具

  多媒體

  4.標簽

  函數(shù)及其表示

  教學過程

 。ㄒ唬﹦(chuàng)設情景,揭示課題

  1、復習初中所學函數(shù)的概念,強調函數(shù)的模型化思想;

  2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:

 。1)炮彈的射高與時間的變化關系問題;

 。2)南極臭氧空洞面積與時間的變化關系問題;

 。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關系問題.

  3、分析、歸納以上三個實例,它們有什么共同點;

  4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

  5、根據(jù)初中所學函數(shù)的'概念,判斷各個實例中的兩個變量間的關系是否是函數(shù)關系.

  (二)研探新知

  1、函數(shù)的有關概念

 。1)函數(shù)的概念:

  設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.

 。2)構成函數(shù)的三要素是什么?

  定義域、對應關系和值域

 。3)區(qū)間的概念

  ①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 、跓o窮區(qū)間;

  ③區(qū)間的數(shù)軸表示.

 。4)初中學過哪些函數(shù)?它們的定義域、值域、對應法則分別是什么?

  通過三個已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.

  師:歸納總結

 。ㄈ┵|疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

 。1)求函數(shù)的定義域;

 。2)求f(-3),f()的值;

 。3)當a>0時,求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  例2、設一個矩形周長為80,其中一邊長為x,求它的面積關于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導學生小結幾類函數(shù)的定義域:

 。1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.

 。3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內的式子大于或等于零的實數(shù)的集合.

 。4)如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)

 。5)滿足實際問題有意義.

  鞏固練習:課本P19第1

  2、如何判斷兩個函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個與函數(shù)y=x相等?

  分析:

  1構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  2兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。

  解:

  課本P18例2

 。ㄋ模w納小結

 、購木唧w實例引入了函數(shù)的概念,用集合與對應的語言描述了函數(shù)的定義及其相關概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

 。ㄎ澹┰O置問題,留下懸念

  1、課本P24習題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應關系.

  課堂小結

高中數(shù)學教案7

  教學目標:

  1。理解并掌握瞬時速度的定義;

  2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

  3。理解瞬時速度的實際背景,培養(yǎng)學生解決實際問題的能力。

  教學重點:

  會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

  教學難點:

  理解瞬時速度和瞬時加速度的定義。

  教學過程:

  一、問題情境

  1。問題情境。

  平均速度:物體的運動位移與所用時間的比稱為平均速度。

  問題一平均速度反映物體在某一段時間段內運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

  問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的'速度.

  2。探究活動:

  (1)計算運動員在2s到2.1s(t∈)內的平均速度。

  (2)計算運動員在2s到(2+?t)s(t∈)內的平均速度。

  (3)如何計算運動員在更短時間內的平均速度。

  探究結論:

  時間區(qū)間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當?t?0時,?-13.1,

  該常數(shù)可作為運動員在2s時的瞬時速度。

  即t=2s時,高度對于時間的瞬時變化率。

  二、建構數(shù)學

  1。平均速度。

  設物體作直線運動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內的平均速度為。

  可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當?t?0時,極限就是物體在時刻的瞬時速度。

  三、數(shù)學運用

  例1物體作自由落體運動,運動方程為,其中位移單位是m,時

  間單位是s,,求:

 。1)物體在時間區(qū)間s上的平均速度;

  (2)物體在時間區(qū)間上的平均速度;

 。3)物體在t=2s時的瞬時速度。

  分析

  解

 。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

  (2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當?t?0,2+?t?2,從而平均速度的極限為:

  例2設一輛轎車在公路上作直線運動,假設時的速度為,

  求當時轎車的瞬時加速度。

  解

  ∴當?t無限趨于0時,無限趨于,即=。

  練習

  課本P12—1,2。

  四、回顧小結

  問題1本節(jié)課你學到了什么?

  1理解瞬時速度和瞬時加速度的定義;

  2實際應用問題中瞬時速度和瞬時加速度的求解;

  問題2解決瞬時速度和瞬時加速度問題需要注意什么?

  注意當?t?0時,瞬時速度和瞬時加速度的極限值。

  問題3本節(jié)課體現(xiàn)了哪些數(shù)學思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數(shù)學教案8

  教學要求:

  理解曲線交點與方程組的解的關系,掌握直線與曲線位置關系的討論,能熟練地求曲線交點。

  教學重點:

  熟練地求交點。

  教學過程:

 一、復習準備:

  1、直線A x+B+C=0與直線A x+B+C=0,平行的充要條件是xx,相交的充要條件是xx;

  重合的充要條件是xx,垂直的充要條件是xx。

  2、知識回顧:充分條件、必要條件、充要條件。

二、講授新課:

  1、教學例題:

 、俪鍪纠呵笾本=x+1截曲線=x所得線段的中點坐標。

 、谟蓪W生分析求解的思路→學生練→老師評講

 。(lián)立方程組→消用韋達定理求x坐標→用直線方程求坐標)

  ③試求→訂正→小結思路!冾}:求弦長

  ④出示例:當b為何值時,直線=x+b與曲線x+=4分別相交?相切?相離?

 、莘治觯喝N位置關系與兩曲線的交點情況有何關系?

 、迣W生試求→訂正→小結思路。

  ⑦討論其它解法?

  解一:用圓心到直線的距離求解;

  解二:用數(shù)形結合法進行分析。

 、嘤懻摚簝蓷l曲線F(x,)=0與F(x,)=0相交的充要條件是什么?

  如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關系?

 。(lián)立方程組后,一解時:相切或相交;二解時:相交;無解時:相離)

  2、練習:

  求過點(—2,—)且與拋物線=x相切的`直線方程。

三、鞏固練習:

  1、若兩直線x+=3a,x-=a的交點在圓x+=5上,求a的值。

 。ù鸢福篴=±1)

  2、求直線=2x+3被曲線=x截得的線段長。

  3、課堂作業(yè):書P72 3、4、10題。

高中數(shù)學教案9

  內容分析:

  1、 集合是中學數(shù)學的一個重要的基本概念

  在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎。

  把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎

  例如,下一章講函數(shù)的概念與性質,就離不開集合與邏輯。

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明

  然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

  這節(jié)課主要學習全章的引言和集合的基本概念

  學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義

  本節(jié)課的教學重點是集合的基本概念。

  集合是集合論中的原始的、不定義的概念

  在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識

  教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集

  ”這句話,只是對集合概念的描述性說明。

  教學過程:

  一、復習引入:

  1.簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質數(shù)與和數(shù);

  2.教材中的章頭引言;

  3.集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);

  4.“物以類聚”,“人以群分”;

  5.教材中例子(P4)。

  二、講解新課:

  閱讀教材第一部分,問題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號?是如何表示的?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P概念:由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

  定義:一般地,某些指定的對象集在一起就成為一個集合.

  1、集合的概念

  (1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

  (2)元素:集合中每個對象叫做這個集合的元素

  2、常用數(shù)集及記法

  (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合,記作N,N={0,1,2,…}

  (2)正整數(shù)集:非負整數(shù)集內排除0的集,記作N*或N+,N*={1,2,3,…}

  (3)整數(shù)集:全體整數(shù)的集合,記作Z ,Z={0,±1,±2,…}

 。4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分數(shù)}

  (5)實數(shù)集:全體實數(shù)的集合,記作R,R={數(shù)軸上所有點所對應的數(shù)}

  注:(1)自然數(shù)集與非負整數(shù)集是相同的.,也就是說,自然數(shù)集包括數(shù)0

 。2)非負整數(shù)集內排除0的集,記作N*或N+

  Q、Z、R等其它數(shù)集內排除0的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成Z*

  3、元素對于集合的隸屬關系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒有重復

 。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫。

高中數(shù)學教案10

  一、教材分析

  1、教材地位和作用:二面角是我們日常生活中經(jīng)常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊(shù)學》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學目標:

  知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

 。2)進一步培養(yǎng)學生把空間問題轉化為平面問題的化歸思想。

  能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

  德育目標:(1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,增強學生應用數(shù)學的意識(2)通過揭示線線、線面、面面之間的內在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。

  情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

  3、重點、難點:

  重點:“二面角”和“二面角的平面角”的概念

  難點:“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓練法、探究研討法為主。

 。、教學控制與調節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據(jù)學生及教學的實際情況,估計二面角的具體求法一節(jié)課內完成有一定的困難,所以將其放在下節(jié)課。

  3、教學手段:教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。

  三、學法指導

  1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。

  2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結構。

  3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

  四、教學過程

  心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產(chǎn)生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。

 。ㄒ唬、二面角

  1、揭示概念產(chǎn)生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學習了哪些角?

  問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個問題,打開了學生的原有認知結構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。2、展現(xiàn)概念形成過程。

  問題情境4、那么,應該如何定義二面角呢?

  創(chuàng)設這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結果,教師要給與積極的評價。

  問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。

 。ǘ、二面角的平面角

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的.探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過程

 。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。

  問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。

  問題情境9、這個平面的角的頂點及兩邊是如何確定的?

 。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。

  問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。

 。3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。

  (4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯(lián)想到平面內過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

 。5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當?shù)囊龑,并加以理論證明。

 。ㄈ、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模⒎独治

  為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領會到數(shù)學概念來自生活實際,并服務于生活實際,從而增強他們應用數(shù)學的意識。

  例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

  分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

 。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹、練習、小結與作業(yè)

  練習:習題9.7的第3題

  小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結,領會復習類比和深入研究這兩種知識創(chuàng)新的方法。

  作業(yè):習題9.7的第4題

  思考題:見例題

  五、板書設計(見課件)

  以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!

高中數(shù)學教案11

  =

  =425a0b0=425.

  點評:化簡這類式子一般有兩種辦法,一是首先用負指數(shù)冪的定義把負指數(shù)化成正指數(shù),另一個方法是采用分式的基本性質把負指數(shù)化成正指數(shù)。

  (3)5-26+7-43-6-42

  =(3-2)2+(2-3)2-(2-2)2

  =3-2+2-3-2+2=0.

  點評:考慮根號里面的數(shù)是一個完全平方數(shù),千萬注意方根的性質的運用。

  例3已知,n∈正整數(shù)集,求(x+1+x2)n的值。

  活動:學生思考,觀察題目的特點,從整體上看,應先化簡,然后再求值,要有預見性,與具有對稱性,它們的積是常數(shù)1,為我們解題提供了思路,教師引導學生考慮問題的思路,必要時給予提示。

  = 。

  這時應看到1+x2=,

  這樣先算出1+x2,再算出1+x2,代入即可。

  解:將代入1+x2,得1+x2=,

  所以(x+1+x2)n=

  =

  = =5.

  點評:運用整體思想和完全平方公式是解決本題的關鍵,要深刻理解這種做法。

  知能訓練

  課本習題2.1A組3.

  利用投影儀投射下列補充練習:

  1、化簡:的結果是()

  A. B.

  C. D.

  解析:根據(jù)本題的特點,注意到它的整體性,特別是指數(shù)的規(guī)律性,我們可以進行適當?shù)淖冃巍?/p>

  因為,所以原式的分子分母同乘以。

  依次類推,所以。

  答案:A

  2、計算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.

  解:原式=

  =53+100+916-3+13+716=100.

  3、計算a+2a-1+a-2a-1(a≥1)。

  解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。

  本題可以繼續(xù)向下做,去掉絕對值,作為思考留作課下練習。

  4、設a>0,,則(x+1+x2)n的值為__________.

  解析:1+x2= 。

  這樣先算出1+x2,再算出1+x2,

  將代入1+x2,得1+x2= 。

  所以(x+1+x2)n=

  = =a.

  答案:a

  拓展提升

  參照我們說明無理數(shù)指數(shù)冪的意義的過程,請你說明無理數(shù)指數(shù)冪的意義。

  活動:教師引導學生回顧無理數(shù)指數(shù)冪的意義的過程,利用計算器計算出3的近似值,取它的過剩近似值和不足近似值,根據(jù)這些近似值計算的過剩近似值和不足近似值,利用逼近思想,“逼出”的意義,學生合作交流,在投影儀上展示自己的探究結果。

  解:3=1.732 050 80…,取它的過剩近似值和不足近似值如下表。

  3的過剩近似值

  的過剩近似值

  3的不足近似值

  的不足近似值

  1.8 3.482 202 253 1.7 3.249 009 585

  1.74 3.340 351 678 1.73 3.317 278 183

  1.733 3.324 183 446 1.731 3.319 578 342

  1.732 1 3.322 110 36 1.731 9 3.321 649 849

  1.732 06 3.322 018 252 1.732 04 3.321 972 2

  1.732 051 3.321 997 529 1.732 049 3.321 992 923

  1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838

  1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045

  … … … …

  我們把用2作底數(shù),3的不足近似值作指數(shù)的各個冪排成從小到大的一列數(shù)

  21.7,21.72,21.731,21.731 9,…,

  同樣把用2作底數(shù),3的過剩近似值作指數(shù)的各個冪排成從大到小的一列數(shù):

  21.8,21.74,21.733,21.732 1,…,不難看出3的過剩近似值和不足近似值相同的位數(shù)越多,即3的近似值精確度越高,以其過剩近似值和不足近似值為指數(shù)的冪2α會越來越趨近于同一個數(shù),我們把這個數(shù)記為,

  即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.

  也就是說是一個實數(shù),=3.321 997 …也可以這樣解釋:

  當3的過剩近似值從大于3的方向逼近3時,23的近似值從大于的方向逼近;

  當3的.不足近似值從小于3的方向逼近3時,23的近似值從小于的方向逼近。

  所以就是一串有理指數(shù)冪21.7,21.73,21.731,21.731 9,…,和另一串有理指數(shù)冪21.8,21.74,21.733,21.732 1,…,按上述規(guī)律變化的結果,即≈3.321 997.

  課堂小結

  (1)無理指數(shù)冪的意義。

  一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù)。

  (2)實數(shù)指數(shù)冪的運算性質:

  對任意的實數(shù)r,s,均有下面的運算性質:

  ①ar?as=ar+s(a>0,r,s∈R)。

 、(ar)s=ars(a>0,r,s∈R)。

 、(a?b)r=arbr(a>0,b>0,r∈R)。

 。3)逼近的思想,體會無限接近的含義。

  作業(yè)

  課本習題2.1 B組2.

  設計感想

  無理數(shù)指數(shù)是指數(shù)概念的又一次擴充,教學中要讓學生通過多媒體的演示,理解無理數(shù)指數(shù)冪的意義,教學中也可以讓學生自己通過實際情況去探索,自己得出結論,加深對概念的理解,本堂課內容較為抽象,又不能進行推理,只能通過多媒體的教學手段,讓學生體會,特別是逼近的思想、類比的思想,多作練習,提高學生理解問題、分析問題的能力。

  備課資料

  【備用習題】

  1、以下各式中成立且結果為最簡根式的是()

  A.a?5a3a?10a7=10a4

  B.3xy2(xy)2=y?3x2

  C.a2bb3aab3=8a7b15

  D.(35-125)3=5+125125-235?125

  答案:B

  2、對于a>0,r,s∈Q,以下運算中正確的是()

  A.ar?as=ars B.(ar)s=ars

  C.abr=ar?bs D.arbs=(ab)r+s

  答案:B

  3、式子x-2x-1=x-2x-1成立當且僅當()

  A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2

  解析:方法一:

  要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

  若x≥2,則式子x-2x-1=x-2x-1成立。

  故選D.

  方法二:

  對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時式子不成立。

  對B,x-1<0時式子不成立。

  對C,x<1時x-1無意義。

  對D正確。

  答案:D

  4、化簡b-(2b-1)(1

  解:b-(2b-1)=(b-1)2=b-1(1

  5、計算32+5+32-5.

  解:令x=32+5+32-5,

  兩邊立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

  ∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

  ∴32+5+32-5=1.

高中數(shù)學教案12

  猴子搬香蕉

  一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。

  河岸的距離

  兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?

  解答:

  當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度

  等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經(jīng)走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。

  變量交換

  不使用任何其他變量,交換a,b變量的值?

  分析與解答

  a = a+b

  b = a-b

  a= a-b

  步行時間

  某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。

  有一次,司機比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到

  他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開;氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?

  解答:

  假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發(fā),因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現(xiàn)在遇到溫斯頓總裁的地點到火車站再回到這個地點上的'時間。這意味著,如果司機開車從現(xiàn)在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

  因此,溫斯頓步行了26分鐘。

  付清欠款

  有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;

  貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?

  解答:

  貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。

  貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實質的好習慣。

  一美元紙幣

  注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

  一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:

 。1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

 。2)這四人中沒有一人能夠兌開任何一枚硬幣。

 。3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要

  付的帳單款額其次,一個叫內德的男士要付的賬單款額最小。

  (4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。

 。5)如果這三位男士相互之間等值調換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。

 。6)當這三位男士進行了兩次等值調換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。

  (7)隨著事情的進一步發(fā)展,又出現(xiàn)如下的情況:

  (8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

  現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?

  解答:

  對題意的以下兩點這樣理解:

 。2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。

 。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。

高中數(shù)學教案13

  教學目標

 。1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。

 。2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點。

 。4)通過求曲線方程的教學,培養(yǎng)學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。

  (5)進一步理解數(shù)形結合的思想方法。

  教學建議

  教材分析

  (1)知識結構

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質。曲線方程的概念和求曲線方程的問題又有內在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。

  (2)重點、難點分析

 、俦竟(jié)內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。

 、诒竟(jié)的難點是曲線方程的概念和求曲線方程的方法。

  教法建議

 。1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調曲線方程的完備性和純粹性。

 。2)可以結合已經(jīng)學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的'意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。

 。4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合。

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。

  這五個步驟的實質是將產(chǎn)生曲線的幾何條件逐步轉化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程!

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。

高中數(shù)學教案14

  高中數(shù)學趣味競賽題(共10題)

  1 、撒謊的有幾人

  5個高中生有,她們面對學校的新聞采訪說了如下的話:

  愛:“我還沒有談過戀愛! 靜香:“愛撒謊了。”

  瑪麗:“我曾經(jīng)去過昆明! 惠美:“瑪麗在撒謊。”

  千葉子:“瑪麗和惠美都在撒謊! 那么,這5個人之中到底有幾個人在撒謊呢?

  2、她們到底是誰

  有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。

  穿黑色衣服的女子說:“我不是天使! 穿藍色衣服的女子說:“我不是人。” 穿白色衣服的女子說:“我不是惡魔!蹦敲,這三人到底分別是誰呢?

  3、半只小貓

  聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家?墒,只剩下1只小貓了。

  “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

  4、被蟲子吃掉的算式

  一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。

  那么,請問原來的算式是什么樣子的呢?

  5、巧動火柴

  用16根火柴擺成5個正方形。請移動2根火柴,

  使

  正形變成4。

  6、折過來的角

  把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、啊!雙胞胎?

  丈夫臨死前,給有身孕的'妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。

  結果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?

  9、贈送和降價哪個更好?

  1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

  10、折成15度

  用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?

高中數(shù)學教案15

  各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數(shù)學》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數(shù)知識的內在聯(lián)系和相互轉化,蘊含著歸納、轉化、數(shù)形結合等豐富的數(shù)學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

 。ǘ┙虒W內容

  本節(jié)內容分2課時學習。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數(shù)與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數(shù)與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學中的和諧美,體驗成功的樂趣。

  二、教學目標分析

  根據(jù)教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:

  知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數(shù)”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創(chuàng)設問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數(shù)形結合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應點的橫坐標的內在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

  四、教法與學法分析

 。ㄒ唬⿲W法指導

  教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數(shù)學的美,會產(chǎn)生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設計的指導思想是:現(xiàn)代認知心理學——建構主義學習理論。

  建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經(jīng)驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設計

  本節(jié)課的教學設計充分體現(xiàn)以學生發(fā)展為本,培養(yǎng)學生的觀察、概括和探究能力,遵循學生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,通過問題情境的創(chuàng)設,激發(fā)興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

 。ㄒ唬﹦(chuàng)設情景,引出“三個一次”的關系

  本節(jié)課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

  為此,我設計了以下幾個問題:

  1、請同學們解以下方程和不等式:

 、2x-7=0;②2x-70;③2x-70

  學生回答,我板書。

  2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質就容易得到。

  3、接著我提出:我們能否利用不等式的基本性質來解一元二次不等式呢?學生可能感到很困惑。

  4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:

 、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

  交點的橫坐標。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的上方的點的橫坐標的集合。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的下方的點的橫坐標的集合。

  三組關系的得出,實際上讓學生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發(fā)了學生解決新問題的興趣。此時,學生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。

 。ǘ┍扰f悟新,引出“三個二次”的關系

  為此我引導學生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。

  看函數(shù)y=x2-x-6的.圖象并說出:

  ①方程x2-x-6=0的解是

  x=-2或x=3 ;

 、诓坏仁絰2-x-60的解集是

  {x|x-2,或x3};

  ③不等式x2-x-60的解集是

  {x|-23}。

  此時,學生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

  學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關系?

 。ㄈw納提煉,得出“三個二次”的關系

  1、引導學生根據(jù)圖象與x軸的相對位置關系,寫出相關不等式的解集。

  2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學生得出:將二次項系數(shù)由負化正,轉化為上述模式求解,教師應予以強調;也有的學生提出畫出相應的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應給予肯定。)

  (四)應用新知,熟練掌握一元二次不等式的解集

  借助二次函數(shù)的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:

  例1、解不等式2x2-3x-20

  解:因為Δ0,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規(guī)范了一元二次不等式的解題格式。

  下面我們接著學習課本例2。

  例2 解不等式-3x2+6x2

  課本例2的出現(xiàn)恰當好處,一方面突出了“對于二次項系數(shù)是負數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。

  通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。

  4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。

  (五)總結

  解一元二次不等式的“四部曲”:

  (1)把二次項的系數(shù)化為正數(shù)

  (2)計算判別式Δ

  (3)解對應的一元二次方程

  (4)根據(jù)一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

 。┳鳂I(yè)布置

  為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發(fā)展的空間,我布置了“探究題”。

  (1)必做題:習題1.5的1、3題

 。2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數(shù)k的取值范圍。

 。ㄆ撸┌鍟O計

  一元二次不等式解法(1)

  五、教學效果評價

  本節(jié)課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創(chuàng)新精神的培養(yǎng),引導學生發(fā)現(xiàn)數(shù)學的美,體驗求知的樂趣。

【高中數(shù)學教案】相關文章:

高中數(shù)學教案12-30

高中數(shù)學教案02-21

高中數(shù)學教案【熱門】01-25

高中數(shù)學教案【推薦】01-25

高中數(shù)學教案【薦】01-25

高中數(shù)學教案【熱】01-25

高中數(shù)學教案模板02-02

高中數(shù)學教案優(yōu)秀12-10

高中數(shù)學教案(通用)10-27

高中數(shù)學教案(精品)06-28