国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>初二數(shù)學(xué)教案

初二數(shù)學(xué)教案

時(shí)間:2024-05-31 13:11:18 數(shù)學(xué)教案 我要投稿

【精品】初二數(shù)學(xué)教案15篇

  作為一位無(wú)私奉獻(xiàn)的人民教師,常常需要準(zhǔn)備教案,借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家收集的初二數(shù)學(xué)教案,歡迎大家分享。

【精品】初二數(shù)學(xué)教案15篇

初二數(shù)學(xué)教案1

  1、教材分析

  (1)知識(shí)結(jié)構(gòu):

 。2)重點(diǎn)和難點(diǎn)分析:

  重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

  難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

  2、教法建議

 。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

 。2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

 。3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

 。4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的`問(wèn)題。

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。

  2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1、通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。

  2、通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸思想。

  3、會(huì)根據(jù)比較簡(jiǎn)單的條件畫出指定的四邊形。

  4、講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對(duì)學(xué)生滲透類比思想。

 。ㄈ┑掠凉B透點(diǎn)

  使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。

  (四)美育滲透點(diǎn)

  通過(guò)四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。

  二、學(xué)法引導(dǎo)

  類比、觀察、引導(dǎo)、講解

  三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法

  1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問(wèn)題。

  2、教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問(wèn)題;四邊形不穩(wěn)定性的理解和應(yīng)用。

  3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒(méi)有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。

  四、課時(shí)安排

  2課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師引入新課,學(xué)生觀察圖形,類比三角形知識(shí)導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。

  第一課時(shí)

  七、教學(xué)步驟

  【復(fù)習(xí)引入】

  在小學(xué)里已經(jīng)對(duì)四邊形、長(zhǎng)方形、平形四邊形的有關(guān)知識(shí)有所了解,但還很膚淺,這一

  章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識(shí)解決一些新問(wèn)題。

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖。

  師問(wèn):在上圖中你能把知道的長(zhǎng)方形、正方形、平行四邊形、梯形找出來(lái)嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。

  【講解新課】

  1、四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對(duì)角線(同時(shí)學(xué)生在書(shū)上畫出上述概念),講解這些概念時(shí):

 。1)要結(jié)合圖形。

 。2)要與三角形類比。

 。3)講清定義中的關(guān)鍵詞語(yǔ)。如四邊形定義中要說(shuō)明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。

  (4)強(qiáng)調(diào)四邊形對(duì)角線的作用,作為四邊形的一種常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形來(lái)解(滲透化歸思想),并觀察圖4—3用對(duì)角線分成的這些三角形與原四邊形的關(guān)系。

  (5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書(shū)寫四邊形如圖41。

 。6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長(zhǎng)后再下結(jié)論如圖4—4,圖4—5。

  2、四邊形內(nèi)角和定理

  教師問(wèn):

 。1)在圖4—3中對(duì)角線AC把四邊形ABCD分成幾個(gè)三角形?

 。2)在圖4—6中兩條對(duì)角線AC和BD把四邊形分成幾個(gè)三角形?

  (3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形。

  我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:

 、2180=360如圖4

  ②4180—360=360如圖4—7。

  例1已知:如圖48,直線于B、于C。

  求證:(1)(2)。

  本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。

  【總結(jié)、擴(kuò)展】

  1、四邊形的有關(guān)概念。

  2、四邊形對(duì)角線的作用。

  3、四邊形內(nèi)角和定理。

  八、布置作業(yè)

  教材P128中1(1)、2、 3。

  九、板書(shū)設(shè)計(jì)

初二數(shù)學(xué)教案2

  一、相交線:

  性質(zhì):兩條直線相交,有且只有一個(gè)交點(diǎn)。

  二、對(duì)頂角、鄰補(bǔ)角:

  1.對(duì)頂角:如圖,直線AB和CD相交于點(diǎn)O,∠1與∠2有公共頂點(diǎn)O,它們的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做對(duì)頂角。

  說(shuō)明:兩個(gè)角是對(duì)頂角必需滿足兩個(gè)條件:(1)有公共頂點(diǎn);(2)兩邊互為反向延長(zhǎng)線。

  2.鄰補(bǔ)角:如圖,∠1和∠2有一條公共邊OC,它們的另一條邊OA、OB互為反向延長(zhǎng)線,顯然它們互補(bǔ)。具有這種關(guān)系的兩個(gè)角叫做互為鄰補(bǔ)角。

  3.性質(zhì):(1)對(duì)頂角相等;(2)互為鄰補(bǔ)角的兩個(gè)角的和等于。

  三、有關(guān)垂線的概念和性質(zhì):1.概念:如果兩條直線相交所成的四個(gè)角中,有一角是直角,就說(shuō)這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。

  說(shuō)明:垂直是相交的一種特殊情況。

  2.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。

  說(shuō)明:垂線是直線,而垂線段是一條線段,點(diǎn)到直線的距離不是指垂線段,而是指垂線段的長(zhǎng)度。

  3.平行線間的距離:同時(shí)垂直于兩條平行線,并且?jiàn)A在這兩條平行線間的線段的長(zhǎng)度,叫做這兩條平行線間的距離。平行線間的距離處處相等。

  4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個(gè)角都是直角;(2)過(guò)直線上一點(diǎn)或直線外一點(diǎn)畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡(jiǎn)單地說(shuō):垂線段最短;(4)平行線間的距離處處相等。

  四、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  如圖,直線AB、CD被第三條直線EF所截,構(gòu)成八個(gè)角,簡(jiǎn)稱“三線八角”。

  1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在AB、CD同側(cè),且在EF同側(cè)。同位角呈“F”形;

  2.內(nèi)錯(cuò)角:∠3與∠5,∠4與∠6,它們分夾在AB、CD之間,同時(shí)又各在EF兩側(cè)。內(nèi)錯(cuò)角呈“Z”形;

  3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在AB、CD之間,同時(shí)又在EF同側(cè)。同旁內(nèi)角呈“U”形。

  說(shuō)明:(1)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個(gè)角;

  (2)這三類角都是由兩條直線被第三條直線所截形成的;

 。3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯(cuò)角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;

 。4)兩條直線被第三條直線所截成的八個(gè)角中,同位角4對(duì),內(nèi)錯(cuò)角2對(duì),同旁內(nèi)角2對(duì)。

  常見(jiàn)考法

  (1)對(duì)頂角、鄰補(bǔ)角、同位角、內(nèi)錯(cuò)角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識(shí)一起考查;(2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。

  誤區(qū)提醒

 。1)對(duì)頂角、鄰補(bǔ)角以及垂線的概念理解有誤;(2)在復(fù)雜圖形中辨認(rèn)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角時(shí)產(chǎn)生遺漏或錯(cuò)認(rèn)。

  【典型例題】如圖,∠BAC=90°,AD⊥BC,則下面的結(jié)論中,正確的個(gè)數(shù)是()個(gè)。

 、冱c(diǎn)B到AC的垂線段是線段AB;

 、诰段AC是點(diǎn)C到AB的垂線段;

 、劬段AD是點(diǎn)D到BC的垂線段;

 、芫段BD是點(diǎn)B到AD的垂線段;

  A.1B.2C.3D.4

  【解析】③是錯(cuò)誤的,其余的均是正確的,故本題選C

  一、目標(biāo)與要求

  1.理解對(duì)頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn);

  2.掌握對(duì)頂角相等的性質(zhì)和它的推證過(guò)程;

  3.通過(guò)在圖形中辨認(rèn)對(duì)頂角和鄰補(bǔ)角,培養(yǎng)學(xué)生的識(shí)圖能力。

  二、重點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  兩條直線互相垂直的概念、性質(zhì)和畫法;

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念與識(shí)別。

  三、難點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對(duì)頂角和鄰補(bǔ)角;

  對(duì)點(diǎn)到直線的距離的概念的理解;

  對(duì)平行線本質(zhì)屬性的理解,用幾何語(yǔ)言描述圖形的性質(zhì);

  能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。

  四、知識(shí)框架

  五、知識(shí)點(diǎn)、概念總結(jié)

  1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。

  3.對(duì)頂角和鄰補(bǔ)角的關(guān)系

  4.垂直:兩條直線、兩個(gè)平面相交,或一條直線與一個(gè)平面相交,如果交角成直角,叫做互相垂直。

  5.垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  6.垂足:如果兩直線的'夾角為直角,那么就說(shuō)這兩條直線互相垂直,它們的交點(diǎn)叫做垂足。

  7.垂線性質(zhì)

  (1)在同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

  (2)連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡(jiǎn)單說(shuō)成:垂線段最短。

  (3)點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。

  8.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。

  內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。

  9.平行:在平面上兩條直線、空間的兩個(gè)平面或空間的一條直線與一平面之間沒(méi)有任何公共點(diǎn)時(shí),稱它們平行。

  10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  11.命題:判斷一件事情的語(yǔ)句叫命題。

  12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。

  13.假命題:條件和結(jié)果相矛盾的命題是假命題。

  14.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。

  15.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。

  16.定理與性質(zhì)

  對(duì)頂角的性質(zhì):對(duì)頂角相等。

  17.垂線的性質(zhì):

  性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

  18.平行公理:經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行。

  平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  19.平行線的性質(zhì):

  性質(zhì)1:兩直線平行,同位角相等。

  性質(zhì)2:兩直線平行,內(nèi)錯(cuò)角相等。

  性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

  20.平行線的判定:

  判定1:同位角相等,兩直線平行。

  判定2:內(nèi)錯(cuò)角相等,兩直線平行。

  判定3:同旁內(nèi)角相等,兩直線平行。充要條件。

初二數(shù)學(xué)教案3

  一、學(xué)生情況分析及改進(jìn)提高措施:

  學(xué)生們經(jīng)過(guò)兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡(jiǎn)單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會(huì)了獨(dú)立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會(huì)了探究問(wèn)題,并能根據(jù)具體情況提出合理的問(wèn)題,還能正確解決問(wèn)題的能力。無(wú)論是理解問(wèn)題的能力,還是分析、解決問(wèn)題的能力均有所提高,基礎(chǔ)知識(shí)和基本技能打得也比較扎實(shí),對(duì)數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂(lè)于參與到學(xué)習(xí)活動(dòng)中去,特別是對(duì)一些動(dòng)手操作,合作學(xué)習(xí),實(shí)踐活動(dòng)等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計(jì)一些活動(dòng),引導(dǎo)學(xué)生進(jìn)行獨(dú)立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的經(jīng)驗(yàn)。

  在數(shù)學(xué)知識(shí)上已經(jīng)掌握了兩步計(jì)算式題和有余數(shù)的除法,還有統(tǒng)計(jì)知識(shí),并學(xué)會(huì)了辨認(rèn)八個(gè)方位;掌握了萬(wàn)以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長(zhǎng)度單位毫米、厘米、分米、米和千米的實(shí)際長(zhǎng)度和簡(jiǎn)單的換算以及實(shí)際測(cè)量,并能用以上這些相應(yīng)的知識(shí)解決實(shí)際生活中的問(wèn)題?傊@些技能和知識(shí)點(diǎn)都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識(shí)打下了堅(jiān)實(shí)的基礎(chǔ),他們愛(ài)學(xué)數(shù)學(xué)的熱情,以及對(duì)數(shù)學(xué)的感悟能力會(huì)在本學(xué)期進(jìn)一步得到發(fā)揚(yáng)光大,他們的.情感、態(tài)度、價(jià)值觀會(huì)沿著良性軌道螺旋式上升。

  具體提高措施是:

  1.從學(xué)生的年齡特點(diǎn)出發(fā),多采用情境活動(dòng)式教學(xué),培養(yǎng)學(xué)生的參與意識(shí)。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問(wèn)題,能積極投入到探索問(wèn)題的活動(dòng)中去,絕大部分學(xué)生能夠在課堂上主動(dòng)的研究問(wèn)題,獲取知識(shí)。

  2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問(wèn)題,讓學(xué)生在解決問(wèn)題的過(guò)程中能夠聯(lián)系到實(shí)際,便于對(duì)問(wèn)題的理解。結(jié)合學(xué)生的生活實(shí)際,將問(wèn)題生活化,讓學(xué)生從生活中獲取到更多的解決問(wèn)題的素材。

  3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實(shí)踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實(shí)踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長(zhǎng),并做記錄,再將每天的記錄制作成統(tǒng)計(jì)圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長(zhǎng)度單位,讓他們從成語(yǔ)詞典上收集有關(guān)長(zhǎng)度單位的成語(yǔ),通過(guò)對(duì)詞語(yǔ)的理解把握其表示的長(zhǎng)度。

  4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時(shí)學(xué)習(xí)情況,與學(xué)生家長(zhǎng)多溝通交流。

  二、本冊(cè)教材分析

  本冊(cè)教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動(dòng)實(shí)踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動(dòng)有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實(shí)問(wèn)題的過(guò)程中獲得對(duì)數(shù)學(xué)知識(shí)的理解和體驗(yàn)。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長(zhǎng);(6)年、月、日;(7)可能性;(8)共有五個(gè)社會(huì)實(shí)踐活動(dòng),還有兩個(gè)整理復(fù)習(xí),一個(gè)總復(fù)習(xí)。具體特點(diǎn)是:

  1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動(dòng)手操作與抽象概括相結(jié)合,體驗(yàn)乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號(hào)感。

  2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗(yàn)出發(fā),注重通過(guò)操作活動(dòng)發(fā)展空間觀念。

  3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計(jì)。

  三、總體教學(xué)目標(biāo):

  (一)、知識(shí)與技能

  1.在單元學(xué)習(xí)中,學(xué)生通過(guò)“數(shù)一數(shù)”、“分一分”等活動(dòng),經(jīng)歷從具體情境中抽象出乘法除法算式,體會(huì)乘法與除法的意義。

  2.學(xué)平面圖形的周長(zhǎng),會(huì)進(jìn)行周長(zhǎng)的計(jì)算。

  (二)、實(shí)踐能力培養(yǎng)

  1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過(guò)程,體驗(yàn)從不同的位置觀察,所看到的物體可能是不一樣的。

  2.結(jié)合生活情境,感受并認(rèn)識(shí)質(zhì)量單位。

  3.經(jīng)歷對(duì)生活中某些現(xiàn)象進(jìn)行推理、判斷的過(guò)程,能對(duì)生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。

  (三)、情感與態(tài)度

  1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動(dòng)中,能夠感受到思考的條理性和合理性。

  2、教師重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià),讓他們?cè)诟惺艿綐?lè)趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  教研專題:

  創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識(shí)。

  個(gè)人專題:

  在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識(shí),提高課堂的有效性。

初二數(shù)學(xué)教案4

  教學(xué)目的

  通過(guò)分析儲(chǔ)蓄中的數(shù)量關(guān)系、商品利潤(rùn)等有關(guān)知識(shí),經(jīng)歷運(yùn)用方程解決實(shí)際問(wèn)題的過(guò)程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。

  重點(diǎn)、難點(diǎn)

  1.重點(diǎn):探索這些實(shí)際問(wèn)題中的等量關(guān)系,由此等量關(guān)系列出方程。

  2.難點(diǎn):找出能表示整個(gè)題意的等量關(guān)系。

  教學(xué)過(guò)程

  一、復(fù)習(xí)

  1.儲(chǔ)蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)

  本利和=本金×利息×年數(shù)+本金

  2.商品利潤(rùn)等有關(guān)知識(shí)。

  利潤(rùn)=售價(jià)—成本; =商品利潤(rùn)率

  二、新授

  問(wèn)題4.小明爸爸前年存了年利率為2.43%的.二年期定期儲(chǔ)蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問(wèn)小明爸爸前年存了多少元?

  利息—利息稅=48。6

  可設(shè)小明爸爸前年存了x元,那么二年后共得利息為

  2.43%×X×2,利息稅為2.43%X×2×20%

  根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6

  問(wèn),扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得

  2.43%x·2.80%=48.6

  解方程,得x=1250

  例1.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?

  大家想一想這15元的利潤(rùn)是怎么來(lái)的?

  標(biāo)價(jià)的80%(即售價(jià))-成本=15

  若設(shè)這種服裝每件的成本是x元,那么

  每件服裝的標(biāo)價(jià)為:(1+40%)x

  每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%

  每件服裝的利潤(rùn)為:(1+40%)x·80%—x

  由等量關(guān)系,列出方程:

 。1+40%)x·80%—x=15

  解方程,得x=125

  答:每件服裝的成本是125元。

  三、鞏固練習(xí)

  教科書(shū)第15頁(yè),練習(xí)1、2。

  四、小結(jié)

  當(dāng)運(yùn)用方程解決實(shí)際問(wèn)題時(shí),首先要弄清題意,從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題,然后分析數(shù)學(xué)問(wèn)題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問(wèn)題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。

  五、作業(yè)

  教科書(shū)第16頁(yè),習(xí)題6.3.1,第4、5題。

初二數(shù)學(xué)教案5

  課型:

  復(fù)習(xí)課

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1. 針對(duì)函數(shù)及其圖象一章,查漏補(bǔ)缺,答疑解惑;

  2. 一次函數(shù)應(yīng)用的復(fù)習(xí).

  補(bǔ)充例題:

  例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系

  (1)B出發(fā)時(shí)與A相距 千米;

  (2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí);

  (3)B出發(fā)后 小時(shí)與A相遇;

  (4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式;

  (5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn), 小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn) 千米,在圖中表示出這個(gè)相遇點(diǎn)C.

  例2.在平面直角坐標(biāo)系中,過(guò)一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長(zhǎng)與面積相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如,圖中過(guò)點(diǎn)P分別作x軸, y的垂線,與坐標(biāo)軸圍成矩形OAPB的周長(zhǎng)與面積相等,則點(diǎn)P是和諧點(diǎn).

  (1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說(shuō)明理由;

  (2)若和諧點(diǎn)P(a,3)在直線y=-x+b(b為常數(shù))上,求點(diǎn)a, b的值.

  例3.在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的正方形邊線(如圖①)按一定方向運(yùn)動(dòng).圖②是P點(diǎn)運(yùn)動(dòng)的路程s(個(gè)單位)與運(yùn)動(dòng)時(shí)間 (秒)之間的函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動(dòng)的路程s之間的`函數(shù)圖象的一部分.

  (1)求s與t之間的函數(shù)關(guān)系式.

  (2)與圖③相對(duì)應(yīng)的P點(diǎn)的運(yùn)動(dòng)路徑是: ;P點(diǎn)出發(fā) 秒首次到達(dá)點(diǎn)B;

  (3)寫出當(dāng)38時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.

  課后續(xù)助:

  1.某市自來(lái)水公司為限制單位用水,每月只給某單位計(jì)劃內(nèi)用水3000噸,計(jì)劃內(nèi)用水每噸收費(fèi)0.5元,超計(jì)劃部分每噸按0.8元收費(fèi).

  (1)寫出該單位水費(fèi)y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式

  ①用水量小于等于3000噸 ;②用水量大于3000噸 .

  (2)某月該單位用水3200噸,水費(fèi)是 元;若用水2800噸,水費(fèi) 元.

  (3)若某月該單位繳納水費(fèi)1540元,則該單位用水多少噸?

  2.某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無(wú)月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.

  (1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;

  (2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;

  (3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.

  3.某氣象研究中心觀測(cè)一場(chǎng)沙塵暴從發(fā)生到結(jié)束全過(guò)程, 開(kāi)始時(shí)風(fēng)暴平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過(guò)開(kāi)闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減小1千米/時(shí),最終停止。 結(jié)合風(fēng)速與時(shí)間的圖像,回答下列問(wèn)題:

  (1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;

  (2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過(guò)多少小時(shí)?

  (3)求出當(dāng)x25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式.

  (4)若風(fēng)速達(dá)到或超過(guò)20千米/時(shí),稱為強(qiáng)沙塵暴,則強(qiáng)沙塵暴持續(xù)多長(zhǎng)時(shí)間?

初二數(shù)學(xué)教案6

  教學(xué)目標(biāo):

  知識(shí)與技能

  1、掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;

  2、進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問(wèn)題抽象出數(shù)學(xué)問(wèn)題的能力,建立數(shù)學(xué)模型、

  3、會(huì)通過(guò)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論、

  情感態(tài)度與價(jià)值觀

  敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)、

  教學(xué)重點(diǎn)

  運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過(guò)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論、

  教學(xué)難點(diǎn)

  會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論、

  課前準(zhǔn)備

  標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇

  教學(xué)過(guò)程:

  復(fù)習(xí)引入:

  請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?

  已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?

  創(chuàng)設(shè)問(wèn)題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁(yè)古埃及造直角的方法、

  這樣做得到的是一個(gè)直角三角形嗎?

  提出課題:能得到直角三角形嗎

  講授新課:

  1、如何來(lái)判斷?(用直角三角板檢驗(yàn))

  這個(gè)三角形的'三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

  就是說(shuō),如果三角形的三邊為 , , ,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))

  2、繼續(xù)嘗試:下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:

  5,12,13; 6, 8, 10; 8,15,17、

 。1)這三組數(shù)都滿足a2 +b2=c2嗎?

 。2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?

  3、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2 ,那么這個(gè)三角形是直角三角形、

  滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)、

  4、例1 一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?

  隨堂練習(xí):

  1、下列幾組數(shù)能否作為直角三角形的三邊長(zhǎng)?說(shuō)說(shuō)你的理由、

 、9,12,15; ⑵15,36,39;

 、12,35,36; ⑷12,18,22、

  2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_(kāi)______三角形, ______是角、

  3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積、

  4、習(xí)題1、3

  課堂小結(jié):

  1、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2 ,那么這個(gè)三角形是直角三角形、

  2、滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)、勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)、

初二數(shù)學(xué)教案7

  一、教學(xué)目標(biāo)

  1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.

  2.掌握矩形的性質(zhì)定理.

  3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力.

  4.通過(guò)性質(zhì)的學(xué)習(xí),體會(huì)矩形的應(yīng)用美.

  二、教法設(shè)計(jì)

  觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.

  三、重點(diǎn)、難點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):矩形的性質(zhì)及其推論.

  2.教學(xué)難點(diǎn):矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  教具(一個(gè)活動(dòng)的平行四邊形),投影儀及膠片,常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證

  七、教學(xué)步驟

  【復(fù)習(xí)提問(wèn)】

  什么叫平行四邊形?它和四邊形有什么區(qū)別?

  【引入新課】

  我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的.特殊性質(zhì),同樣對(duì)于平行四邊形來(lái)說(shuō),也有特殊情況即特殊的平行四邊形, 堂課我們就來(lái)研究一種特殊的平行四邊形矩形(寫出課題).

  【講解新課】

  制一個(gè)活動(dòng)的平行四邊形教具,堂上進(jìn)行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個(gè)角是直角時(shí),指出這時(shí)平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個(gè)角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).

  矩形的性質(zhì):

  既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時(shí)矩形又是特殊的平行四邊形,比平行四邊形多了一個(gè)角是直角的條件,因而它就增加了一些特殊性質(zhì).

  繼續(xù)演示教具,當(dāng)它變成矩形時(shí),學(xué)生容易看到它的四個(gè)角都是直角;它的對(duì)角線也相等(寫出這兩個(gè)結(jié)論),指出觀察出來(lái)的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.

  矩形性質(zhì)定理1:矩形的四個(gè)角都是直角.

  矩形性質(zhì)定理2:矩形對(duì)角線相等.

  由矩形性質(zhì)定理2我們可以得到

  推論:直角三角形斜邊上的中線等于斜邊的一半.

  (這實(shí)際上是 △的一個(gè)重要性質(zhì),即 △斜邊中點(diǎn)到三頂點(diǎn)的距離相等,它在求線段長(zhǎng)或線段部分關(guān)系時(shí)經(jīng)常用到)

  例1 已知如圖1 矩形 的兩條對(duì)角線相交于點(diǎn), , ,求矩形對(duì)角線的長(zhǎng).(按教材的格式)

  (強(qiáng)調(diào)這種計(jì)算題的解題格式,防止學(xué)生離開(kāi)幾何元素之間的關(guān)系,而單純進(jìn)行代數(shù)計(jì)算)

  【總結(jié)、擴(kuò)展】

  1.小結(jié):(用投影打出)

  (1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.

  (2)矩形性質(zhì).

  1.具有平行四邊形的所有性質(zhì).

  2.特有性質(zhì):四個(gè)角都是直角,對(duì)角線相等.

  3.思考題:已知如圖, 是矩形 對(duì)角線交點(diǎn), 平分 , ,求 的度數(shù)

  八、布置作業(yè)

  教材P158中2、5,P195中7.

  九、板書(shū)設(shè)計(jì)

  十、隨堂練習(xí)

  教材P146中1、2、3、4

初二數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計(jì)量的直方圖;

  2、讓學(xué)生進(jìn)一步經(jīng)歷數(shù)據(jù)的整理和表示的過(guò)程,掌握繪制頻率分布直方圖的方法;

  教學(xué)重點(diǎn)

  掌握頻率分布直方圖概念及其應(yīng)用;

  教學(xué)難點(diǎn)

  繪制連續(xù)統(tǒng)計(jì)量的直方圖

  教學(xué)過(guò)程

  Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境,引入新課:

  問(wèn)題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個(gè)想法可以實(shí)現(xiàn)嗎?應(yīng)該選擇身高在哪個(gè)范圍的.學(xué)生參加?

  63名學(xué)生的身高數(shù)據(jù)如下:

  158158160168159159151158159

  168158154158154169158158158

  159167170153160160159159160

  149163163162172161153156162

  162163157162162161157157164

  155156165166156154166164165

  156157153165159157155164156

  解:(確定組距)最大值為172,最小值為149,他們的差為23

  (身高x的變化范圍在23厘米,)

 。ǚ纸M劃記)頻數(shù)分布表:

  身高(x)劃記頻數(shù)(學(xué)生人數(shù))

  149≤x

  152≤x

  155≤x

  158≤x

  161≤

  164≤x

  167≤x

  170≤x

  從表中看,身高在155≤x

 。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)

  探究:上面對(duì)數(shù)據(jù)分組時(shí),組距取3,把數(shù)據(jù)分成8個(gè)組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個(gè)組,這樣做能否選出身高比較整齊的隊(duì)員?

  分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊(duì)員。

  歸納:組距和組數(shù)的確定沒(méi)有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗(yàn)和研究的具體問(wèn)題來(lái)決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個(gè)以內(nèi)時(shí),根據(jù)數(shù)據(jù)的多少通常分為5~12個(gè)組。

  我們還可以用頻數(shù)折線圖來(lái)描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來(lái)。

  首先取直方圖中每一個(gè)長(zhǎng)方形上邊的中草藥點(diǎn),然后在橫軸上取兩個(gè)頻數(shù)為0的點(diǎn),在上方圖的左邊。147、5,0),在直方圖的右邊取點(diǎn)(174、5,0),將這些點(diǎn)用線段依次連接起來(lái),就得到頻數(shù)折線圖。

  頻數(shù)折線圖也可以不通過(guò)直方圖直接畫出。

  根據(jù)表12.2-2,求了各個(gè)小組兩個(gè)端點(diǎn)的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對(duì)應(yīng)的頻數(shù)為縱坐標(biāo)描點(diǎn),另外再在橫軸上取兩個(gè)點(diǎn),依次連接這些點(diǎn),就得到頻數(shù)分布折線圖如課本P73圖。

  II課堂小結(jié):

  (1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

 。2)組距和組數(shù)沒(méi)有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個(gè)以內(nèi)時(shí),通常分成5~12組

 。3)如果取個(gè)長(zhǎng)方形上邊的中點(diǎn),可以得到頻數(shù)折線圖

 。4)求各小組兩個(gè)斷點(diǎn)的平均數(shù),這些平均數(shù)叫組中值。

初二數(shù)學(xué)教案9

  初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié):等腰三角形

  一、等腰三角形的性質(zhì):

  1、等腰三角形兩腰相等.

  2、等腰三角形兩底角相等(等邊對(duì)等角)。

  3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的'高相互重合.

  4、等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條)。

  5、等邊三角形的性質(zhì):

  ①等邊三角形三邊都相等.

 、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于60°

  ③等邊三角形每條邊上都存在三線合一.

 、艿冗吶切问禽S對(duì)稱圖形,對(duì)稱軸是三線合一(3條).

  6.基本判定:

 、诺妊切蔚呐卸ǎ

  ①有兩條邊相等的三角形是等腰三角形.

 、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).

 、频冗吶切蔚呐卸ǎ

 、偃龡l邊都相等的三角形是等邊三角形.

 、谌齻(gè)角都相等的三角形是等邊三角形.

  ③有一個(gè)角是60°的等腰三角形是等邊三角形.

初二數(shù)學(xué)教案10

  知識(shí)與技能

  1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運(yùn)算。

  2.會(huì)用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  3.體驗(yàn)勾股定理的探索過(guò)程,會(huì)運(yùn)用勾股定理解決簡(jiǎn)單問(wèn)題。會(huì)運(yùn)用勾股定理的逆定理判定直角三角形。

  4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明和計(jì)算。

  5.進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,會(huì)計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會(huì)用它們表示數(shù)據(jù)的波動(dòng)情況。

  過(guò)程與方法

  進(jìn)一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的'表達(dá)能力;解決一些實(shí)際問(wèn)題,體會(huì)化歸思想和函數(shù)的變化與對(duì)應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說(shuō)話的習(xí)慣和實(shí)事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動(dòng)中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。

  情感、態(tài)度與價(jià)值觀

  豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)和體驗(yàn),通過(guò)對(duì)問(wèn)題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過(guò)對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對(duì)教學(xué)活動(dòng)中的困難,能通過(guò)合作交流解決遇到的困難。

初二數(shù)學(xué)教案11

  新課指南

  1、知識(shí)與技能:

  (1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;

  (2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號(hào)法則;

  (3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力。

  2、過(guò)程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過(guò)程,學(xué)會(huì)列簡(jiǎn)單的代數(shù)式。在具體情境中體會(huì)同類項(xiàng)的意義及合并同類項(xiàng)、去括號(hào)法則的.必要性,總結(jié)合并同類項(xiàng)及去括號(hào)的法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡(jiǎn)單的實(shí)際問(wèn)題。

  3、情感態(tài)度與價(jià)值觀:通過(guò)對(duì)整式加減的學(xué)習(xí),深入體會(huì)代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識(shí)打下良好的基礎(chǔ),同時(shí),也使我們體會(huì)到數(shù)學(xué)知識(shí)的產(chǎn)生來(lái)源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面。

  4、重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項(xiàng)的法則和去括號(hào)的法則。難點(diǎn)是探索規(guī)律的過(guò)程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識(shí)別整式的項(xiàng)、系數(shù)等知識(shí)。

  教材解讀精華要義

  數(shù)學(xué)與生活

  如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長(zhǎng)方形地面,在第n個(gè)圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊。

  思考討論由圖15-1可以看到,當(dāng)n=1時(shí),一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時(shí),一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時(shí),一橫行有6塊瓷磚,一豎列有5塊瓷磚。綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個(gè)圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊。這就是用字母來(lái)表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

  知識(shí)詳解

  知識(shí)點(diǎn)1代數(shù)式

  用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開(kāi)方)把數(shù)和表示數(shù)。的字母連接起來(lái)的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

  例如:5,a,(a+b),ab,a2-2ab+b2等等。

  知識(shí)點(diǎn)2列代數(shù)式時(shí)應(yīng)該注意的問(wèn)題

 。1)數(shù)與字母、字母與字母相乘時(shí)常省略“×”號(hào)或用“·”。

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

 。2)數(shù)字通常寫在字母前面。

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b)。

  (3)帶分?jǐn)?shù)與字母相乘時(shí)要化成假分?jǐn)?shù)。

  如:2×ab=ab,切勿錯(cuò)誤寫成“2ab”。

  (4)除法常寫成分?jǐn)?shù)的形式。

  如:S÷x=。

初二數(shù)學(xué)教案12

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo)

  1.經(jīng)歷平行四邊形判別條件的探索過(guò)程,發(fā)現(xiàn)平行四邊形的常用判別條件。

  2.掌握平行四邊形的判別條件;對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形。

  3.逐步掌握說(shuō)理的基本方法。

  過(guò)程與方法目標(biāo)

  1.在探索平行四邊形的'判別條件的過(guò)程中,發(fā)展學(xué)生的合情推理意識(shí),主動(dòng)探索的習(xí)慣。

  2.鼓勵(lì)學(xué)生用多種方法進(jìn)行說(shuō)理。

  情感與態(tài)度目標(biāo)

  1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開(kāi)拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

  2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評(píng)價(jià)意識(shí)。

  教材分析

  教材通過(guò)創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

  教學(xué)重點(diǎn):平行四邊形的判別方法。

  教學(xué)難點(diǎn):利用平行四邊形的判別方法進(jìn)行正確的說(shuō)理。

  學(xué)情分析

  初二學(xué)生對(duì)平面圖形的認(rèn)識(shí)能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識(shí)處于現(xiàn)象描述和說(shuō)理的過(guò)渡時(shí)期。因此,對(duì)這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會(huì)正確的說(shuō)理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

  教學(xué)流程

  一、創(chuàng)設(shè)情境,引入新課

  師:請(qǐng)同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

  學(xué)生活動(dòng):學(xué)生按小組進(jìn)行探索。

初二數(shù)學(xué)教案13

  新課指南

  1.知識(shí)與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號(hào)法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.

  2.過(guò)程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過(guò)程,學(xué)會(huì)列簡(jiǎn)單的代數(shù)式.在具體情境中體會(huì)同類項(xiàng)的意義及合并同類項(xiàng)、去括號(hào)法則的必要性,總結(jié)合并同類項(xiàng)及去括號(hào)的法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡(jiǎn)單的實(shí)際問(wèn)題.

  3.情感態(tài)度與價(jià)值觀:通過(guò)對(duì)整式加減的學(xué)習(xí),深入體會(huì)代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識(shí)打下良好的基礎(chǔ),同時(shí),也使我們體會(huì)到數(shù)學(xué)知識(shí)的產(chǎn)生來(lái)源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面.

  4.重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項(xiàng)的法則和去括號(hào)的法則.難點(diǎn)是探索規(guī)律的過(guò)程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識(shí)別整式的項(xiàng)、系數(shù)等知識(shí).

  教材解讀精華要義

  數(shù)學(xué)與生活

  如圖15-1所示,用同樣規(guī)格的黑、白兩色的.正方形瓷磚鋪長(zhǎng)方形地面,在第n個(gè)圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.

  思考討論由圖15-1可以看到,當(dāng)n=1時(shí),一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時(shí),一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時(shí),一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個(gè)圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來(lái)表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

  知識(shí)詳解

  知識(shí)點(diǎn)1代數(shù)式

  用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開(kāi)方)把數(shù)和表示數(shù).的字母連接起來(lái)的式子叫做代數(shù)式.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式.

  例如:5,a,(a+b),ab,a2-2ab+b2等等.

  知識(shí)點(diǎn)2列代數(shù)式時(shí)應(yīng)該注意的問(wèn)題

  (1)數(shù)與字母、字母與字母相乘時(shí)常省略“×”號(hào)或用“·”.

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)數(shù)字通常寫在字母前面.

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

  (3)帶分?jǐn)?shù)與字母相乘時(shí)要化成假分?jǐn)?shù).

  如:2×ab=ab,切勿錯(cuò)誤寫成“2ab”.

  (4)除法常寫成分?jǐn)?shù)的形式.

  如:S÷x=.

初二數(shù)學(xué)教案14

重難點(diǎn)分析

  本節(jié)的重點(diǎn)是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個(gè)角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。

  本節(jié)的難點(diǎn)是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對(duì)角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無(wú)措,教師在教學(xué)過(guò)程中應(yīng)給予足夠重視。

  教法建議

  根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:

  1.矩形的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。

  2.矩形在現(xiàn)實(shí)中的實(shí)例較多,在講解矩形的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí).

  3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁(yè)圖4-30所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些.

  4. 在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納.

  5. 由于矩形的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明.

  6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

  矩形教學(xué)設(shè)計(jì)

  教學(xué)目標(biāo)

  1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說(shuō)出矩形的四個(gè)角都是直角和矩形的的對(duì)角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。

  2.能運(yùn)用以上性質(zhì)進(jìn)行簡(jiǎn)單的證明和計(jì)算。

  此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會(huì)特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點(diǎn)。

  引導(dǎo)性材料

  想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來(lái)說(shuō)明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。

  小學(xué)里已學(xué)過(guò)長(zhǎng)方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個(gè)角都是直角(小學(xué)里已學(xué)過(guò))等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個(gè)圈表示矩形,這個(gè)圈應(yīng)畫在哪里?

  (讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)

  演示:用四根木條制作一個(gè)平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個(gè)內(nèi)角由銳角變?yōu)殁g角的過(guò)程中,會(huì)發(fā)生怎樣的特殊情況,這時(shí)的圖形是什么圖形(矩形)。

  問(wèn)題1:從上面的演示過(guò)程,可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?

  說(shuō)明與建議:教師的演示應(yīng)充分展現(xiàn)變化過(guò)程,從而讓學(xué)生深切地感受到短形是無(wú)數(shù)個(gè)平行四邊形中的一個(gè)特例,同時(shí),又使學(xué)生能正確地給出矩形的定義。

  問(wèn)題2:矩形是特殊的平行四邊形,它除了有一個(gè)角是直角以外,還可能具有哪些平行四邊形所沒(méi)有的特殊性質(zhì)呢?

  說(shuō)明與建議:讓學(xué)生分組探索,有必要時(shí),教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗(yàn),分別從邊、角、對(duì)角線三個(gè)方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個(gè)角是直角矩形的四個(gè)角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。

  學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說(shuō)明:這與矩形的四個(gè)角是直角本質(zhì)上是一致的,所以不必另列為一個(gè)性質(zhì)。

  學(xué)生探索矩形的四條對(duì)角線的大小關(guān)系時(shí),如有困難,可引導(dǎo)學(xué)生測(cè)量并比較矩形兩條對(duì)角線的長(zhǎng)度,然后加以證明,得出性質(zhì)定理2。

  問(wèn)題3:矩形的一條對(duì)角線把矩形分成兩個(gè)直角三角形,矩形的.對(duì)角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?

  說(shuō)明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個(gè)直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:

  證明:在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=BD(矩形的對(duì)角線相等)。

  ,AO=CO

  在Rt△ABC中,BO是斜邊AC上的中線,且 。

  直角三角形斜邊上的中線等于斜邊的一半。

  例題解析

  例1:(即課本例1)

  說(shuō)明:本題難度不大,又有助于學(xué)生加深對(duì)性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:

  如圖4.5-4,欲求對(duì)角線BD的長(zhǎng),由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長(zhǎng),或一個(gè)銳角的度數(shù),再?gòu)囊阎獥l件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計(jì)算題書(shū)寫格式的示范;第二種解法如下:

  ∵四邊形ABCD是矩形,

  AC=BD(矩形的對(duì)角線相等)。

  又 。

  OA=BO,△AOB是等腰三角形,

  ∵AOD=120,AOB=180- 120= 60

  AOB是等邊三角形。

  BO=AB=4cm,

  BD=2BO=244cm=8cm。

  例2:(補(bǔ)充例題)

  已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點(diǎn),EF平分BED交BD于點(diǎn)F。

  (l)猜想:EF與BD具有怎樣的關(guān)系?

  (2)試證明你的猜想。

  解:(l)EF垂直平分BD。

  (2)證明:∵ABC=90,點(diǎn)E是AC的中點(diǎn)。

  (直角三角形的斜邊上的中線等于斜邊的一半)。

  同理: 。

  BE=DE。

  又∵EF平分BED。

  EFBD,BF=DF。

  說(shuō)明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實(shí)際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對(duì)了沒(méi)有?證明了沒(méi)有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過(guò)程,順便指出:求解本題的重要基礎(chǔ)是識(shí)圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個(gè)基本圖形。

  課堂練習(xí)

  1.課本例1后練習(xí)題第2題。

  2.課本例1后練習(xí)題第4題。

  小結(jié)

  1.矩形的定義:

  2.歸納總結(jié)矩形的性質(zhì):

  對(duì)邊平行且相等

  四個(gè)角都是直角

  對(duì)角線平行且相等

  3.直角三角形斜邊上的中線等于斜邊的一半。

  4.矩形的一條對(duì)角線把矩形分成兩個(gè)全等的直角三角形;矩形的兩條對(duì)角線把矩形分成四個(gè)全等的等腰三角形。因此,有關(guān)矩形的問(wèn)題往往可化為直角三角形或等腰三角形的問(wèn)題來(lái)解決。

  作業(yè)

  l.課本習(xí)題4.3A組第2題。

  2.課本復(fù)習(xí)題四A組第6、7題。

初二數(shù)學(xué)教案15

  一、教學(xué)目標(biāo)

  1. 掌握等腰梯形的判定方法.

  2. 能夠運(yùn)用等腰梯形的性質(zhì)和判定進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.

  3. 通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想

  二、教法設(shè)計(jì)

  小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固

  三、重點(diǎn)、難點(diǎn)

  1.教學(xué)重點(diǎn):等腰梯形判定.

  2.教學(xué)難點(diǎn):解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  多媒體,小黑板,常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見(jiàn)的輔助線

  七、教學(xué)步驟

  【復(fù)習(xí)提問(wèn)】

  1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

  2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

  3.在研究解決梯形問(wèn)題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?

  我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來(lái)判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來(lái)研究這個(gè)問(wèn)題.

  【引人新課】

  等腰梯形判定定理:在同一底上的兩個(gè)角相等的.梯形是等腰梯形.

  前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來(lái)證明等腰梯形的判定定理.

  例1已知:如圖,在梯形 中, , ,求證: .

  分析:我們學(xué)過(guò)“如果一個(gè)三角形中有兩個(gè)角相等,那么它們所對(duì)的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個(gè)角轉(zhuǎn)化為等腰三角形的兩個(gè)底角,定理就容易證明了.

  (引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)

  (1)如圖,過(guò)點(diǎn) 作 、 ,交 于 ,得 ,所以得 .

  又由 得 ,因此可得 .

  (2)作高 、 ,通過(guò)證 推出 .

  (3)分別延長(zhǎng) 、 交于點(diǎn) ,則 與 都是等腰三角形,所以可得 .

  (證明過(guò)程略).

  例3 求證:對(duì)角線相等的梯形是等腰梯形.

  已知:如圖,在梯形 中, , .

  求證: .

  分析:證明本題的關(guān)鍵是如何利用對(duì)角線相等的條件來(lái)構(gòu)造等腰三角形.

  在 和 中,已有兩邊對(duì)應(yīng)相等,別人要能證 ,就可通過(guò)證 得到 .

  (引導(dǎo)學(xué)生說(shuō)出證明思路,教師板書(shū)證明過(guò)程)

  證明:過(guò)點(diǎn) 作 ,交 延長(zhǎng)線于 ,得 ,

  ∴ .

  ∵ , ∴

  ∴

  ∵ , ∴

  又∵ 、 ,∴

  ∴ .

  說(shuō)明:如果 、 交于點(diǎn) ,那么由 可得 , ,即等腰梯形對(duì)角線相交,可以得到以交點(diǎn)為頂點(diǎn)的兩個(gè)等腰三角形,這個(gè)結(jié)論雖不能直接引用,但可以為以后解題提供思路.

  例4 畫一等腰梯形,使它上、下底長(zhǎng)分別5cm,高為4cm,并計(jì)算這個(gè)等腰梯形的周長(zhǎng)和面積.

  分析:如圖,先算出 長(zhǎng),可畫等腰三角形 ,然后完成 的畫圖.

  畫法:①畫 ,使 .

  .

  ②延長(zhǎng) 到 使 .

 、鄯謩e過(guò) 、 作 , , 、 交于點(diǎn) .

  四邊形 就是所求的等腰梯形.

  解:梯形 周長(zhǎng) .

  答:梯形周長(zhǎng)為26cm,面積為 .

  【總結(jié)、擴(kuò)展】

  小結(jié):(由學(xué)生總結(jié))

  (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個(gè)角相等”來(lái)判定它是等腰梯形.

  (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

  八、布置作業(yè)

  l.已知:如圖,梯形 中, , 、 分別為 、 中點(diǎn),且 ,求證:梯形 為等腰梯形.

  九、板書(shū)設(shè)計(jì)

  十、隨堂練習(xí)

  教材P177中l(wèi);P179中B組2

【初二數(shù)學(xué)教案】相關(guān)文章:

初二數(shù)學(xué)教案12-12

初二數(shù)學(xué)教案11-02

初二數(shù)學(xué)教案《菱形》08-22

初二數(shù)學(xué)教案【熱門】12-22

初二數(shù)學(xué)教案【精】12-20

【精】初二數(shù)學(xué)教案12-19

【熱門】初二數(shù)學(xué)教案12-20

【薦】初二數(shù)學(xué)教案12-19

初二數(shù)學(xué)教案【推薦】12-18

初二數(shù)學(xué)教案【薦】12-22