国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級數(shù)學(xué)下冊教案

八年級數(shù)學(xué)下冊教案

時間:2024-05-16 12:35:01 數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)下冊教案

  作為一名為他人授業(yè)解惑的教育工作者,總不可避免地需要編寫教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。如何把教案做到重點突出呢?下面是小編精心整理的八年級數(shù)學(xué)下冊教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

八年級數(shù)學(xué)下冊教案

八年級數(shù)學(xué)下冊教案1

  一、創(chuàng)設(shè)情境

  1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?

 。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點的直線?

 。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(0,0)的一條直線).

  3.平面直角坐標(biāo)系中,x軸、y軸上的點的坐標(biāo)有什么特征?

  4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標(biāo)系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標(biāo)軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.

  2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.

  分析x軸上點的縱坐標(biāo)是0,y軸上點的橫坐標(biāo)0.由此可求x軸上點的橫坐標(biāo)值和y軸上點的縱坐標(biāo)值.

  解因為x軸上點的縱坐標(biāo)是0,y軸上點的橫坐標(biāo)0,所以當(dāng)y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當(dāng)x=0時,y=-3,點(0,-3)就是直線與y軸的交點.

  過點(-1.5,0)和(0,-3)所作的`直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當(dāng)x=0時,y=b;當(dāng)y=0時,.所以直線y=kx+b與y軸的交點坐標(biāo)是(0,b),與x軸的交點坐標(biāo)是.

  三、實踐應(yīng)用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標(biāo)為-2;求直線的表達(dá)式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標(biāo)為-2,可求出b的值.

  解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點坐標(biāo),根據(jù)x軸、y軸上點的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

八年級數(shù)學(xué)下冊教案2

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點、難點

  1、重點:理解分式的基本性質(zhì)。

  2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點與突破方法

  教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2、P9的例3、例4地目的'是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

  3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

  四、課堂引入

  1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2。填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3。約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4。通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

八年級數(shù)學(xué)下冊教案3

  一、教學(xué)目標(biāo)

  1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。

  2.使學(xué)生理解和掌握分式和減法法則,并會應(yīng)用法則進(jìn)行分式加減的運(yùn)算。

  3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。

  4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。

  二、教學(xué)重點和難點

  1.重點:分式的加減運(yùn)算。

  2.難點:異分母的分式加減法運(yùn)算。

  三、教學(xué)方法

  啟發(fā)式、分組討論。

  四、教學(xué)手段

  幻燈片。

  五、教學(xué)過程

  (一)引入

  1.如何計算:2.如何計算:3.若分母不同如何計算?如:

  (二)新課

  1.類比分?jǐn)?shù)的通分得到分式的通分:把幾個異分母的'分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依據(jù):分式的基本性質(zhì)。

  3.通分的關(guān)鍵:確定幾個分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

  例1通分:

 。1)解:∵最簡公分母是,

  小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù)。

 。2)解:

  例2通分:

 。1)解:∵最簡公分母的是2x(x+1)(x—1),

  小結(jié):當(dāng)分母是多項式時,應(yīng)先分解因式。

 。2)解:將分母分解因式:∴最簡公分母為2(x+2)(x—2),

  練習(xí):教材P,79中1、2、3。

 。ㄈ┱n堂小結(jié)

  1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

八年級數(shù)學(xué)下冊教案4

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;

  2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對比的思想方法;

  3.在本節(jié)課的教學(xué)過程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會運(yùn)用數(shù)形結(jié)合的觀點去分析問題、解決問題.

  教學(xué)重點和難點

  重點:不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.

  難點:不等式的解集的概念.

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1.什么叫不等式?什么叫方程?什么叫方程的解?(請學(xué)生舉例說明)

  2.用不等式表示:

  (1)x的3倍大于1; (2)y與5的差大于零;

  (3)x與3的和小于6; (4)x的小于2.

  (3)當(dāng)x取下列數(shù)值時,不等式x+3<6是否成立?

  -4,3.5,-2.5,3,0,2.9.

  ((2)、(3)兩題用投影儀打在屏幕上)

  二、講授新課

  1.引導(dǎo)學(xué)生運(yùn)用對比的方法,得出不等式的解的概念

  2.不等式的解集及解不等式

  首先,向?qū)W生提出如下問題:

  不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒有其它的解?若有,解的個數(shù)是多少?它們的分布是有什么規(guī)律?

  (啟發(fā)學(xué)生利用試驗的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實心圓點畫出,將不是x+3<6的解的數(shù)值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)

  然后,啟發(fā)學(xué)生,通過觀察這些點在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡稱不等式x+3<6的解集,記作x<3.

  最后,請學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)

  一般地說,一個含有未知數(shù)的不等式的所有解,組成這個不等式的解的集合.簡稱為這個不等式的解集.

  不等式一般有無限多個解.

  求不等式的解集的過程,叫做解不等式.

  3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集

  我們知道解不等式不能只求個別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個數(shù)或幾個數(shù)組成的,而是由無限多個數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對黑板上板演的結(jié)果做講解)

  在數(shù)軸上表示3的點的左邊部分,表示解集x<3.如下圖所示.

  由于x=3不是不等式x+3<6的解,所以其中表示3的點用空心圓圈標(biāo)出來.(表示挖去x=3這個點)

  記號“≥”讀作大于或等于,既不小于;記號“≤”讀作小于或等于,即不大于.

  例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請一名學(xué)生回答)在數(shù)軸上表示如下圖.

  即用數(shù)軸上表示-2的點和它的右邊部分表示出來.由于解中包含x=-2,故其中表示-2的點用實心圓點表示.

  此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“!边是用實心圓點“.”,是左邊部分,還是右邊部分.

  三、應(yīng)用舉例,變式練習(xí)

  例1 在數(shù)軸上表示下列不等式的解集:

  (1)x≤-5; (2)x≥0; (3)x>-1;

  (4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.

  解(1),(2),(3)略.

  (4)在數(shù)軸上表示1≤x≤4,如下圖

  (5)在數(shù)軸上表示-2<x≤3,如下圖

  (此題在講解時,教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點,是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視遇到問題,及時糾正)

  例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來:

  (1)x小于-1; (2)x不小于-1;

  (3)a是正數(shù); (4)b是非負(fù)數(shù).

  解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)

  (2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)

  (3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)

  (4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)

  (以上各小題分別請四名學(xué)生生回答,教師板書,最后,請學(xué)生在筆記本上畫數(shù)軸表示)

  例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請學(xué)生口答,教師板演)

  解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

  (本題從另一例面來揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的.優(yōu)點)

  練習(xí)(1)用簡明語言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.

  (2)在數(shù)軸上表示下列不等式的解集:

 、賦>3; ②x≥-1; ③x≤-1.5;

 、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.

  (3)用觀察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來.

  (4)觀察不等式<1的解集,并用不等式和數(shù)軸分別表示出來,它的正數(shù)解是什么?

  自然數(shù)解是什么?(*表示選作題)

  四、師生共同小結(jié)

  針對本節(jié)課所學(xué)內(nèi)容,請學(xué)生回答以下問題:

  1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個概念?

  2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點.

  3.記號“≥”、“≤”各表示什么含義?

  4.在數(shù)軸上表示不等式解集時應(yīng)注意什么?

  結(jié)合學(xué)生的回答,教師再強(qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時,需特別注意解的范圍的分界點,以便在數(shù)軸上正確使用空心圓圈“!焙蛯嵭膱A點“·”.

  五、作業(yè)

  1.不等式x+3≤6的解集是什么?

  2.在數(shù)軸上表示下列不等式的解集:

  (1)x≤1; (2)x≤0; (3)-1<x≤5;

  (4)-3≤x≤2; (5)-2<x<; (6)-≤x<.

  3.求不等式x+2<5的正整數(shù)解.

  課堂教學(xué)設(shè)計說明由于本節(jié)課的知識點比較多,因此,在設(shè)計教學(xué)過程時,緊緊抓住不等式的解集這一重點知識.通過對方程的解的電義的回憶,對比學(xué)習(xí)不等式的解及解集.同時,為了進(jìn)一步加深學(xué)生對不等式的解集的理解,教學(xué)中注意運(yùn)用以下幾種教學(xué)方法:(1)啟發(fā)學(xué)生用試驗的方法,結(jié)合數(shù)軸直觀形象來研究不等式的解和解集;(2)比較方程與不等式的解的異同點;(3)通過例題與練習(xí),加深理解.

  在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進(jìn)了一步.因此,在設(shè)計教學(xué)過程時,就充分考慮到應(yīng)使學(xué)生通過本節(jié)課的學(xué)習(xí),進(jìn)一步領(lǐng)會數(shù)形結(jié)合的思想方法具有形象、直觀、易于說明問題的優(yōu)點,并初步學(xué)會用數(shù)形結(jié)合的觀念去處理問題、解決問題.

八年級數(shù)學(xué)下冊教案5

  一、學(xué)習(xí)目標(biāo)

  二、學(xué)習(xí)過程

  閱讀教材

  獨(dú)立完成下列預(yù)習(xí)作業(yè):

  1、觀察下列算式:

 、 ⑵

  請寫出分?jǐn)?shù)的乘除法法則:

  乘法法則:分子乘以分子作為積的'分子、分母乘以分母作為積的分母;

  除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù).

  2、分式的乘除法法則:(類似于分?jǐn)?shù)乘除法法則)

  乘法法則:分子乘以分子作為積的分子、分母乘以分母作為積的分母;

  除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù).

  3、分式乘方:即分式乘方,是把分子、分母分別乘方.

  三、合作交流,解決問題:

  1、計算:

  ⑴ ; ⑵

  2、計算:

  ⑴ ; ⑵ .

  4、計算:⑴ ⑵

  四、課堂測控:

  1、計算:

八年級數(shù)學(xué)下冊教案6

  一、教學(xué)內(nèi)容

  1、教學(xué)內(nèi)容分析:二次根式是在數(shù)的開方的基礎(chǔ)上展開的,是算術(shù)平方根的抽象與擴(kuò)展,同時又為勾股定理和解一元二次方程打下基礎(chǔ).

  2、學(xué)生情況分析:本節(jié)課是二次根式的第一課時,是在學(xué)生學(xué)方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).對此班級中已初步形成合作交流、敢于探索與實踐的良好學(xué)風(fēng),學(xué)生間互相提問的互動氣氛較濃.

  二、教學(xué)設(shè)計理念

  根據(jù)基礎(chǔ)教育課程改革的具體目標(biāo),結(jié)合我校初二學(xué)生的實際情況,改變課程過于注重知識傳授的傾向,強(qiáng)調(diào)形成積極主動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和體驗,實施“三學(xué)六步”課堂改革教學(xué)模式.

  三、教學(xué)目標(biāo)

  1、知識與技能:

  (1)了解二次根式的概念,理解二次根式有意義的條件,并會求二次根式中所含字母的取值范圍;

 。2)理解二次根式的非負(fù)性.

  2、過程與方法:通過對學(xué)、群學(xué)等方式培養(yǎng)學(xué)生分析、概括等能力.

  情感態(tài)度與價值觀:培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識和樂于探索、積極鉆研的科學(xué)精神、合作精神,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  四、教學(xué)重點、難點

  1、教學(xué)重點:了解二次根式的概念,二次根式有意義的條件,并會求二次根式中所含字母的取值范圍

  2、教學(xué)難點:理解二次根式的雙重非負(fù)性

  五、教學(xué)方法、手段

  1、教學(xué)方法:探究法、討論法、發(fā)現(xiàn)法

  2、教學(xué)手段:課件(ppt)

  六、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  問題1 你能用帶有根號的的式子填空嗎?

 。1)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系,如果用含有h 的式子表示 t ,則t= _____.

 。2)下球體過球心的橫截面面積為S,則橫截面圓形的半徑r為 .

 。3)面積為3 的正方形的邊長為_____,面積為S 的正方形的邊長為_____.

  【師生互動】:學(xué)生獨(dú)立思考,用算術(shù)平方根表示結(jié)果,教師適當(dāng)引導(dǎo)和評價.

  【設(shè)計意圖】:讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  探究新知,講授新課

  1.抽象概括,形成概念

  問題2 上面所得的代數(shù)式:,它們的共同特點是什么?

  【師生互動】:學(xué)生獨(dú)立思考并積極發(fā)言,教師歸納總結(jié).

  【設(shè)計意圖】:通過歸納總結(jié)引出二次根式的概念.

  問題3 根據(jù)以前所學(xué)知識,理解二次根式的定義,并且要注意什么.

  【師生互動】:學(xué)生小組討論并且小組長做好記錄,老師歸納總結(jié).

  【設(shè)計意圖】:加深對二次根式的理解.

  2.辨析概念,應(yīng)用鞏固

  問題4 (辯一辯) 判斷給出式子是不是二次根式:①;

  ②;③;④;⑤;⑥

  【師生互動】:學(xué)生獨(dú)立思考并積極發(fā)言,并對于他們的答案做出正確地評價,給予必要的鼓勵.

  【設(shè)計意圖】:該題是利用搶答來調(diào)動課堂氣氛,理解二次根式的定義.

  問題5 根據(jù)要求編寫二次根式:

  (1)請寫出一個你喜歡的二次根式;

  請寫出一個被開方數(shù)含x的二次根式.;

  請你寫出一個被開方數(shù)含x,且當(dāng)x為任何實數(shù)的二次根式.

  【師生互動】:學(xué)生獨(dú)立思考并積極發(fā)言,其他同學(xué)來檢驗是否編寫正確.

  【設(shè)計意圖】:設(shè)計開放性題開拓學(xué)生思維,進(jìn)一步加深對二次根式的`理解.

  靈活運(yùn)用,鞏固提高

  問題6 當(dāng)x是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義:

  【師生互動】:

 。1)學(xué)生口答,老師板書規(guī)范解題格式,(2)(3)學(xué)生演板.學(xué)生完成之后小組討論結(jié)果的正確性,同時對演板的同學(xué)做出評價,老師再適時補(bǔ)充,(2)(3)評價增加一道變式,讓學(xué)生能靈活運(yùn)用知識.最后再歸納這類式子有意義要注意:

 。1)二次根式的被開方數(shù)為非負(fù)數(shù);

  (2)分母中含有字母時,要保證分母不為0.

  【設(shè)計意圖】:本題強(qiáng)化學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解,同時考查學(xué)生的靈活運(yùn)用的能力,訓(xùn)練學(xué)生的思維.

  發(fā)散思維,拓展延伸

  問題7 已知實數(shù)x,y滿足,求:

 。1)x的取值范圍;

  (2)以x,y的值為兩邊長的等腰三角形的周長.

  【師生互動】:學(xué)生先獨(dú)立思考,再小組合作,將答案寫在白板上,并請小組兩位成員上臺展示,其他同學(xué)提出質(zhì)疑,補(bǔ)充,老師適當(dāng)引導(dǎo)點評.

  【設(shè)計意圖】:本題第一問進(jìn)一步加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解;第二問滲透分類思想,通過小組合作,上臺展示體現(xiàn)學(xué)生為主體,發(fā)揮學(xué)生的能動性.

  問題8 (走進(jìn)中考)已知,則 p(x,y)是第 象限.

  【師生互動】:學(xué)生先獨(dú)立思考講解思路,老師適當(dāng)點評.

  【設(shè)計意圖】:本題主要考察

  課堂小結(jié),盤點收獲

  一路下來,我們結(jié)識了很多新知識,你能談?wù)勛约旱氖斋@嗎?說一說,讓大家一起來分享.

  【師生互動】:學(xué)生舉手發(fā)言,老師點評并鼓勵.

  【設(shè)計意圖】:學(xué)生總結(jié),互相取長補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點,幫助學(xué)生把握知識要點,理清知識脈絡(luò),體會數(shù)學(xué)中的分類思想.

  作業(yè)設(shè)計,鞏固提高

  必做題:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(寫序號)

  代數(shù)式有意義,則字母x的取值范圍是 .

  3.代數(shù)式的值為0,則a= .

  選做題:1.已知,則的值為 .

  2.若式子 有意義,則P(a,b)在第 象限.

  小組合作題:

  1.已知m,n滿足 ,求:(1)m,n的值.

 。2)將m,n的值 代入并化簡:

 。3)請選一個你喜歡的x的值代入求值.

  【設(shè)計意圖】:氣氛通過分層作業(yè),教師能及時了解學(xué)生對本節(jié)知識的掌握情況.必做題和選做題如果上課有時間打算用砸金蛋的形式調(diào)動課堂.

 。┌鍟O(shè)計

  16.1.1 二次根式 定義:形如 的式子叫做 二次根式 注:(雙重非負(fù)性) (老師板書) (學(xué)生演板)

八年級數(shù)學(xué)下冊教案7

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個角是直角的四邊形是矩形.

  (指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

  二、例習(xí)題分析

  例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么?

  (1)有一個角是直角的四邊形是矩形;(×)

  (2)有四個角是直角的四邊形是矩形;(√)

  (3)四個角都相等的四邊形是矩形;(√)

  (4)對角線相等的四邊形是矩形;(×)

 。5)對角線相等且互相垂直的四邊形是矩形;(×)

 。6)對角線互相平分且相等的四邊形是矩形;(√)

  (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

 。8)一組鄰邊垂直,一組對邊平行且相等的.四邊形是矩形;(√)

 。9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的條件不滿足三個的肯定不是矩形;

 。2)所給四邊形添加的條件是三個獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補(bǔ)充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補(bǔ)充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

八年級數(shù)學(xué)下冊教案8

  教學(xué)目標(biāo):

  1、本節(jié)課使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根.

  2、使學(xué)生掌握運(yùn)用去分母或換元的方法解可化為一元二次方程的分式方程;使學(xué)生理解轉(zhuǎn)化的數(shù)學(xué)基本思想;

  3、使學(xué)生能夠利用最簡公分母進(jìn)行驗根.

  教學(xué)重點:

  可化為一元二次方程的分式方程的解法.

  教學(xué)難點:

  教學(xué)難點:解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗.

  教學(xué)過程:

  在初二我們已經(jīng)學(xué)過分式方程的概念及可化為一元一次方程的分式方程的解法,知道了解可化為一元一次方程的分式方程的解題步驟以及驗根的目的,了解了轉(zhuǎn)化的思想方法的基本運(yùn)用.今天,我們將在此基礎(chǔ)上,來學(xué)習(xí)可化為一元二次方程的分式方程的解法.“12.7節(jié)”是在學(xué)生已經(jīng)掌握的同類型的方程的解法,直接點出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相類同,及產(chǎn)生增根的原因,以激發(fā)學(xué)生歸納總結(jié)的欲望,使學(xué)生理解類比方法在數(shù)學(xué)解題中的重要性,使學(xué)生進(jìn)一步加深對“轉(zhuǎn)化”這一基本數(shù)學(xué)思想的理解,抓住學(xué)生的.注意力,同時可以激起學(xué)生探索知識的欲望.

  為了使學(xué)生能進(jìn)一步加深對“類比”、“轉(zhuǎn)化”的理解,可以通過回憶復(fù)習(xí)可化為一元一次方程的分式方程的解法,探求解可化為一元二次方程的分式方程的解法,同時通過對產(chǎn)生增根的分析,來達(dá)到學(xué)生對“類比”的方法及“轉(zhuǎn)化”的基本數(shù)學(xué)思想在數(shù)學(xué)學(xué)習(xí)中的重要性的理解,從而調(diào)動學(xué)生能積極主動地參與到教學(xué)活動中去.

  一、新課引入:

  1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?

  2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?

  3、產(chǎn)生增根的原因是什么?.

  二、新課講解:

  通過新課引入,可直接點出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程及其解法,類比地提出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相同.

  點出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識完全類同后,讓全體學(xué)生對照前面復(fù)習(xí)過的分式方程的解,來進(jìn)一步加深對“類比”法的理解,以便學(xué)生全面地參與到教學(xué)活動中去,全面提高教學(xué)質(zhì)量.

  在前面的基礎(chǔ)上,為了加深學(xué)生對新知識的理解,與學(xué)生共同分析解決例題,以提高學(xué)生分析問題和解決問題的能力.

八年級數(shù)學(xué)下冊教案9

  教學(xué)目標(biāo)

  知識與技能:

  1、能用描點法畫出正比例函數(shù)的圖象;

  2、初步了解正比例函數(shù)圖象的性質(zhì)。

  過程與方法:

  通過畫正比例函數(shù)的圖象,探索正比例函數(shù)圖象的性質(zhì),培養(yǎng)觀察能力,體會用數(shù)形結(jié)合的方式思考問題。

  情感態(tài)度與價值觀:

  通過動手操作,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,并養(yǎng)成善于觀察、善于歸納的學(xué)習(xí)習(xí)慣。

  重點:正確理解正比例函數(shù)的圖象及其性質(zhì)。

  難點:通過對正比例函數(shù)圖象的觀察,發(fā)現(xiàn)正比例函數(shù)圖象的性質(zhì)。

  教學(xué)方法:

  1、演示法———發(fā)展觀察力,想象力;

  2、啟發(fā)法———培養(yǎng)學(xué)生主動學(xué)習(xí)能力;

  3、形成性學(xué)習(xí)法———培養(yǎng)觀察、歸納思維能力;

  教學(xué)流程

  教學(xué)環(huán)節(jié):

  教師活動——預(yù)設(shè)學(xué)生行為——學(xué)生活動

  復(fù)習(xí)

  復(fù)習(xí)定義及畫函數(shù)圖像的步驟,學(xué)生快速回憶已學(xué)的概念及畫函數(shù)圖像的步驟(搶答),積極回答問題。

  例

  1、在同一坐標(biāo)系中畫出正比例函數(shù),y=x,y=2x的圖象

  解:(1)列表

 。2)描點

 。3)連線

  x … —3 —2 —1 0 1 2 3 …

  y=x y=2x仔細(xì)觀察,認(rèn)真分析,各自說出自己所發(fā)現(xiàn)的規(guī)律,最后達(dá)成共識。

  計算出正比例函數(shù)的值,認(rèn)真觀察圖象。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面三個函數(shù)圖象的相同點與不同點,三個函數(shù)圖像有怎樣的變化規(guī)律。

  共同點:

  (1)都是比例系數(shù)k>0

 。2)都是一條直線

  (3)都過原點和點(1,k)

  (4)都在一、三象限

 。5)都是從左向右上升

  不同點:上升的幅度不一樣

  歸納總結(jié):

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點及(1,k)直線,我們稱它為直線y=kx。當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,從左向右上升,即隨x的增大y也增大;

  根據(jù)同學(xué)的發(fā)言與老師的歸納,修正自己的認(rèn)識,逐漸理解正比例函數(shù)的性質(zhì)以及畫正比例函數(shù)圖象的簡單方法。發(fā)現(xiàn)正比例函數(shù)的性質(zhì)。

  規(guī)應(yīng)

  應(yīng)用兩點法在同一坐標(biāo)系中畫出y=—1、5x,y=—4x的圖象,利用兩點法畫出函數(shù)圖象,能迅速找到兩個點。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面二個函數(shù)圖象的相同點與不同點,二個函數(shù)圖像有怎樣的`變化規(guī)律。

  共同點:

 。1)都是比例系數(shù)k<0

 。2)都是一條直線

  (3)都過原點和點(1,k)

  (4)都在二、四象限

  (5)都是從左向右下降

  不同點:下降的幅度不一樣

  歸納總結(jié):

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點及(1,k)直線,我們稱它為直線y=kx。當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,從左向右下降,即隨x的增大y反而減;

  知識的遷移:用同樣的辦法發(fā)現(xiàn)規(guī)律。

  課

  1、用你認(rèn)為最簡單的方法畫出下列函數(shù)圖象。

 。1)y=1、5x(2)y=-3x

  2、正比例函數(shù)y=-4x的圖象是過()和()兩點的一條直線,圖象過象限,y隨x的。

  3、正比例函數(shù)y=(m-1)x的圖象過一、三象限,則m的取值范圍是。

  A、m=1

  B、m>1

  C、m<1

  D、m≥1

  4、下列函數(shù)①y=5x ② y=-3x ③y= x ④y=-x中,y隨x的增大而減小的是_____________。

 。芨鶕(jù)正比例函數(shù)性質(zhì)解決問題、認(rèn)真做題)

  小結(jié)

  名稱 解析式 圖象特征 圖象分布 函數(shù)變化情況 正比例函數(shù)

  y=kx(k≠0)是經(jīng)過(0,0)和(1,k)的一條直線

  k>0,k<0;一、三象限Y隨x的增大而增大

  k>0,k<0二、四象限Y隨x的增大而減小

  板設(shè)

  復(fù)習(xí)引入 描點法 畫正比例函數(shù)圖象 正比例函數(shù)圖象性質(zhì)

  規(guī)律應(yīng)用 總結(jié)規(guī)律 練習(xí)小結(jié)

八年級數(shù)學(xué)下冊教案10

  一、回顧交流,合作學(xué)習(xí)

  【活動方略】

  活動設(shè)計:教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報,匯報時可借助投影儀,要求學(xué)生上臺匯報,最后教師歸納.

  【問題探究1】(投影顯示)

  飛機(jī)在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?

  思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時飛行多少千米,就要知道飛機(jī)在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)

  【活動方略】

  教師活動:操作投影儀,引導(dǎo)學(xué)生解決問題,請兩位學(xué)生上臺演示,然后講評.

  學(xué)生活動:獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

  思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的'逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

  【活動方略】

  教師活動:操作投影儀,關(guān)注學(xué)生的思維,請兩位學(xué)生上講臺演示之后再評講.

  學(xué)生活動:思考后,完成“問題探究2”,小結(jié)方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個零件符合要求.

  【問題探究3】

  甲、乙兩位探險者在沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?

  思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動方略】

  教師活動:操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請兩位學(xué)生上講臺“板演”.

  學(xué)生活動:課堂練習(xí),與同伴交流或舉手爭取上臺演示

八年級數(shù)學(xué)下冊教案11

  一、創(chuàng)設(shè)情境

  在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.

  問題1如圖是某地一天內(nèi)的氣溫變化圖.

  看圖回答:

  (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

  解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

  二、探究歸納

  問題2銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長,相應(yīng)的年利率y是如何變化的.

  解隨著存期x的增長,相應(yīng)的年利率y也隨著增長.

  問題3收音機(jī)刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對應(yīng)的數(shù)值:

  觀察上表回答:

  (1)波長l和頻率f數(shù)值之間有什么關(guān)系?

  (2)波長l越大,頻率f就________.

  解(1)l與f的乘積是一個定值,即

  lf=300000,

  或者說.

  (2)波長l越大,頻率f就 越小 .

  問題4圓的面積隨著半徑的'增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

  利用這個關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關(guān).一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級數(shù)學(xué)下冊教案12

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律

  教學(xué)重點:

  1、 一次函數(shù)解析式特點

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點:

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  教學(xué)過程:

 、瘢岢鰡栴},創(chuàng)設(shè)情境

  問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.

  分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.

  問題2 小張準(zhǔn)備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

  分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?

 、颍畬(dǎo)入新課

  上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).

 。5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

  (7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的`一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

 。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

  (7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時,y=3.

  (1)寫出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時,y的值.

  解 (1)因為 y與x-3成正比例,所以y=k(x-3).

  又因為x=4時,y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時,y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進(jìn)出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因為在只打開進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進(jìn)出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

 、螅S堂練習(xí)

  根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時,水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時,超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不

  超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

 、簦n時小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達(dá)式。

  Ⅴ.課后作業(yè)

  1、已知y-3與x成正比例,且x=2時,y=7

  (1)寫出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計算y=-4時x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.

  3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.

  5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級數(shù)學(xué)下冊教案13

  一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運(yùn)動稱為平移。

  1、平移

  2、平移的性質(zhì):

  ⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;

 、茖(yīng)線段平行且相等,對應(yīng)角相等。

  ⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

  (4)平移后的圖形與原圖形全等。

  3、簡單的平移作圖

  ①確定個圖形平移后的位置的條件:

 、判枰瓐D形的位置;

  ⑵需要平移的方向;

 、切枰揭频.距離或一個對應(yīng)點的位置。

 、谧髌揭坪蟮膱D形的方法:

  ⑴找出關(guān)鍵點;

 、谱鞒鲞@些點平移后的對應(yīng)點;

  ⑶將所作的對應(yīng)點按原來方式順次連接,所得的;

  二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。

  1、旋轉(zhuǎn)

  2、旋轉(zhuǎn)的性質(zhì)

  ⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

 、菩D(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。

 、侨我庖粚(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

 、刃D(zhuǎn)前后的兩個圖形全等。

  3、簡單的旋轉(zhuǎn)作圖

 、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。

 、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

 、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

  三、分析組合圖案的形成

 、俅_定組合圖案中的“基本圖案”

 、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

 、厶剿髟搱D案的形成過程,類型有:

 、牌揭谱儞Q;

 、菩D(zhuǎn)變換;

 、禽S對稱變換;

  ⑷旋轉(zhuǎn)變換與平移變換的組合;

 、尚D(zhuǎn)變換與軸對稱變換的組合;

  ⑹軸對稱變換與平移變換的組合。

八年級數(shù)學(xué)下冊教案14

  教學(xué)目標(biāo):

  認(rèn)知目標(biāo):1.了解一次函數(shù)與一元一次不等式的關(guān)系,會根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問題.

  2.學(xué)習(xí)用函數(shù)的觀點看待不等式的方法,初步形成用全面的觀點處理局部問題的.

  能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問題的探究過程,學(xué)習(xí)用聯(lián)系的觀點看待數(shù)學(xué)問題的辨證.

  教學(xué)重點:一次函數(shù)與一元一次不等式的關(guān)系的.理解.

  教學(xué)難點:利用一次函數(shù)的圖象確定一元一次不等式的解集.

  教學(xué)過程:

  一、探究新知:

  通過上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時,一次函數(shù)y=ax+b的值為0”是同一個問題.現(xiàn)在我們來看看:

 。ǎ保┮韵聝蓚問題是否為同一個問題?

 、俳獠坏仁剑海玻-4>0

 、诋(dāng)x為何值時,函數(shù)y=2x-4的值大于0?

 。ǎ玻┠闳绾卫煤瘮(shù)的圖象來說明②?

 。ǎ常敖獠坏仁剑玻-4<0”可以與怎樣的一次函數(shù)問題是同一的?怎樣在圖象上加以說明?

  歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時,求自變量響應(yīng)的取值范圍.

  二、應(yīng)用新知:

 。.練習(xí):P42練習(xí)1(3)(4)

 。.例2 用畫函數(shù)圖象的方法解不等式5x+4>2x+10.

  思考:我們應(yīng)該畫出什么函數(shù)的圖象來解?

  思路1:將不等式化為3x-6>0,然后畫出函數(shù)y=3x-6的圖象.

  思路2:將不等式5x+4>2x+10的兩邊分別看作兩個一次函數(shù),畫出直線y=5x+4和直線y=2x+10,對于同一個x,直線y=5x+4上的點在直線y=2x+10上相應(yīng)點的下方,這時

  5x+4>2x+10.

  三、鞏固練習(xí)

  1.P42練習(xí)2(2)

  2.P45習(xí)題11.3第3、4題

  四、

  五、布置作業(yè)

八年級數(shù)學(xué)下冊教案15

  一、目標(biāo)要求

  1.理解掌握異分母分式加減法法則。

  2.能正確熟練地進(jìn)行異分母分式的加減運(yùn)算。

  二、重點難點

  重點:異分母分式的加減法法則及其運(yùn)用。

  難點:正確確定最簡公分母和靈活運(yùn)用法則。

  1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质,然后再加減。用式子表示為:±=。

  2.分式通分時,要注意幾點:(1)如果各分母的系數(shù)都是整數(shù)時通分,常取它們的系數(shù)的最小公倍數(shù),作為最簡公分母的系數(shù);(2)若分母的系數(shù)不是整數(shù)時,先用分式的基本性質(zhì)將其化為整數(shù),再求最小公倍數(shù);(3)分母的系數(shù)若是負(fù)數(shù)時,應(yīng)利用符號法則,把負(fù)號提取到分式前面;(4)若分母是多項式時,先按某一字母順序排列,然后再進(jìn)行因式分解,再確定最簡公分母。

  三、解題方法指導(dǎo)

  【例1】計算:(1)++;

 。2)-x-1;

 。3)--。

  分析:(1)把分母的.各多項式按x的降冪排列,能先分解因式的將其分解因式,找最簡公分母,轉(zhuǎn)化為同分母的分式加減法。(2)一個整式與一個分式相加減,應(yīng)把這個整式看作一個分母是1的式子來進(jìn)行通分,注意-x-1=,要注意負(fù)號問題。

  解:(1)原式=-+=-+====;

 。2)原式======;

 。3)原式=--===。

  【例2】計算:。+++。

  分析:此題若將4個分式同時通分,分子將是很復(fù)雜的,計算也是比較復(fù)雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進(jìn)行加減。

  解:原式=++=++=+=+==。

  四、激活思維訓(xùn)練

  ▲知識點:異分母分式的加減

  【例】計算:-+。

  分析:此題如果直接通分,運(yùn)算勢必十分復(fù)雜。當(dāng)各分子的次數(shù)大于或等于分母的次數(shù)時,可利用多項式的除法,將其分離為整式部分與分式部分的和,再加減會使運(yùn)算簡便。

  解:原式=[x+2-]-[x+3+]

 。玔+1]

  =x+2--x-3-++1

  =--+=====。

  五、基礎(chǔ)知識檢測

  1.填空題:

【八年級數(shù)學(xué)下冊教案】相關(guān)文章:

八年級數(shù)學(xué)下冊教案01-10

數(shù)學(xué)下冊教案03-16

八年級下冊數(shù)學(xué)教案01-01

人教版八年級數(shù)學(xué)下冊教案04-27

八年級下冊數(shù)學(xué)教案優(yōu)秀02-29

八年級數(shù)學(xué)下冊教案15篇01-10

八年級數(shù)學(xué)下冊教案(15篇)02-20

數(shù)學(xué)下冊《變化的量》教案11-21

數(shù)學(xué)下冊教案 15篇03-16