- 初中數(shù)學(xué)教案答案八年級(jí)上冊(cè)最新 推薦度:
- 相關(guān)推薦
人教版八年級(jí)上冊(cè)數(shù)學(xué)教案最新模板
作為一名老師,可能需要進(jìn)行教案編寫(xiě)工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。如何把教案做到重點(diǎn)突出呢?下面是小編整理的人教版八年級(jí)上冊(cè)數(shù)學(xué)教案最新模板,僅供參考,大家一起來(lái)看看吧。
人教版八年級(jí)上冊(cè)數(shù)學(xué)教案最新模板1
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【問(wèn)題牽引】
1.分解因式:
。1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
。3)x2-0.01y2。
【知識(shí)遷移】
2.計(jì)算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
。3)(a+b)2;(4)(a-b)2。
【教師活動(dòng)】
引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。
3.分解因式:
。1)m2-8mn+16n2(2)m2+8mn+16n2;
。3)a2+2ab+b2;(4)a2-2ab+b2。
【學(xué)生活動(dòng)】
從逆向思維的角度入手,很快得到下面答案:
解:
。1)m2-8mn+16n2=(m-4n)2;
。2)m2+8mn+16n2=(m+4n)2;
。3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2。
【歸納公式】
完全平方公式a2±2ab+b2=(a±b)2。
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
。1)-4a2b+12ab2-9b3;
。2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4。
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3。
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題。
【探研時(shí)空】
1.已知x+y=7,xy=10,求下列各式的值。
。1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值。
四、課堂總結(jié),發(fā)展?jié)撃?/strong>
由于多項(xiàng)式的.因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫(xiě),就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2。
在運(yùn)用公式因式分解時(shí),要注意:
。1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;
。2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;
。3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解。
五、布置作業(yè),專(zhuān)題突破
人教版八年級(jí)上冊(cè)數(shù)學(xué)教案最新模板2
教學(xué)目標(biāo):
1、理解并掌握等腰三角形的判定定理及推論。
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系。
教學(xué)重點(diǎn):
等腰三角形的判定定理及推論的運(yùn)用。
教學(xué)難點(diǎn):
正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的.判定定理證明線段的相等關(guān)系。
教學(xué)過(guò)程:
一、復(fù)習(xí)等腰三角形的性質(zhì)。
二、新授:
I提出問(wèn)題,創(chuàng)設(shè)情境
出示投影片.某地質(zhì)專(zhuān)家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(shù)(B點(diǎn))為B標(biāo),然后在這棵樹(shù)的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專(zhuān)家測(cè)得AC的長(zhǎng)度就可知河流寬度。
學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問(wèn)題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”。
II引入新課
1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB=AC嗎?
作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?
2.引導(dǎo)學(xué)生根據(jù)圖形,寫(xiě)出已知、求證。
2、小結(jié),通過(guò)論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書(shū)定理名稱(chēng))。
強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類(lèi)似于性質(zhì)定理可簡(jiǎn)稱(chēng)“等角對(duì)等邊”。
4.引導(dǎo)學(xué)生說(shuō)出引例中地質(zhì)專(zhuān)家的測(cè)量方法的根據(jù)。
人教版八年級(jí)上冊(cè)數(shù)學(xué)教案最新模板3
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容:
三角形高線、中線及角平分線的概念、幾何語(yǔ)言表達(dá)及它們的畫(huà)法。
2.內(nèi)容解析:
本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫(huà)法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛(ài)生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備。
本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的'畫(huà)法,難點(diǎn)是鈍角三角形的高的畫(huà)法及不同類(lèi)型的三角形高線的位置關(guān)系。
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo):
(1)理解三角形的高、中線與角平分線等概念;
(2)會(huì)用工具畫(huà)三角形的高、中線與角平分線;
2.教學(xué)目標(biāo)解析:
。1)經(jīng)歷畫(huà)圖實(shí)踐過(guò)程,理解三角形的高、中線與角平分線等概念。
。2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線與角平分線的性質(zhì)。
(3)掌握三角形的高、中線與角平分線的畫(huà)法。
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn)。
三、教學(xué)問(wèn)題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘闹本上。
三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn)。
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上。而角的平分線是一條射線,即就是說(shuō)三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別。
人教版八年級(jí)上冊(cè)數(shù)學(xué)教案最新模板4
教學(xué)目標(biāo):
知識(shí)與技能:
1.掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;
2.進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問(wèn)題抽象出數(shù)學(xué)問(wèn)題的能力,建立數(shù)學(xué)模型。
3.會(huì)通過(guò)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論。
情感態(tài)度與價(jià)值觀:
敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
教學(xué)重點(diǎn):
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過(guò)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論。
教學(xué)難點(diǎn):
會(huì)辨析哪些問(wèn)題應(yīng)用哪個(gè)結(jié)論。
課前準(zhǔn)備:
標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇。
教學(xué)過(guò)程:
復(fù)習(xí)引入:
請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的'前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?
創(chuàng)設(shè)問(wèn)題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁(yè)古埃及造直角的方法。
這樣做得到的是一個(gè)直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
、比绾蝸(lái)判斷?(用直角三角板檢驗(yàn))
這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說(shuō),如果三角形的.三邊為xx,xx,xx,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿(mǎn)足較小兩邊的平方和等于較大邊的平方時(shí))。
、怖^續(xù)嘗試:下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:
5,12,13;6,8,10;8,15,17。
(1)這三組數(shù)都滿(mǎn)足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形是直角三角形。
滿(mǎn)足a2+b2=c2的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。
、蠢1一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角。工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?
隨堂練習(xí):
⒈下列幾組數(shù)能否作為直角三角形的三邊長(zhǎng)?說(shuō)說(shuō)你的理由。
⑴9,12,15;⑵15,36,39;
、12,35,36;⑷12,18,22。
、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_(kāi)______三角形,______是角。
、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積。
、戳(xí)題1.3。
課堂小結(jié):
、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴L(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形是直角三角形。
、矟M(mǎn)足a2+b2=c2的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)。
【八年級(jí)上冊(cè)數(shù)學(xué)教案最新】相關(guān)文章:
初中數(shù)學(xué)教案答案八年級(jí)上冊(cè)最新01-06
八年級(jí)上冊(cè)數(shù)學(xué)教案12-11
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)上冊(cè)數(shù)學(xué)教案13篇01-08
八年級(jí)上冊(cè)數(shù)學(xué)教案(13篇)01-09
八年級(jí)上冊(cè)數(shù)學(xué)教案(精選20篇)07-12
八年級(jí)上冊(cè)數(shù)學(xué)教案15篇11-09