国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>數(shù)學(xué)二次根式教案

數(shù)學(xué)二次根式教案

時(shí)間:2023-02-15 18:47:03 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)二次根式教案15篇

  作為一名優(yōu)秀的教育工作者,時(shí)常需要編寫(xiě)教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整?靵(lái)參考教案是怎么寫(xiě)的吧!以下是小編幫大家整理的數(shù)學(xué)二次根式教案,歡迎大家分享。

數(shù)學(xué)二次根式教案15篇

數(shù)學(xué)二次根式教案1

  教法:

  1、引導(dǎo)發(fā)現(xiàn)法:通過(guò)教師精心設(shè)計(jì)的問(wèn)題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問(wèn)題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

  2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的'閱讀習(xí)慣和規(guī)范的解題格式。

  學(xué)法:

  1、類比的方法通過(guò)觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。

  2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

  3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

  4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

  知識(shí)點(diǎn)

  上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來(lái)學(xué)習(xí)。

  二、展示目標(biāo),自主學(xué)習(xí):

  自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁(yè)——4頁(yè)內(nèi)容,完成下列任務(wù):

  1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。

  2、完成3頁(yè)“探究”中的填空,你得到的結(jié)論是____________________。

  3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。

  4、完成4頁(yè)“探究”中的填空,你得到的結(jié)論是:____________________。

  5、看懂例3,有困難可與同伴交流或問(wèn)老師。

  課時(shí)作業(yè)

  教師節(jié)要到了,為了表示對(duì)老師的敬意,小明做了兩張大小不同的正方形壁畫(huà)準(zhǔn)備送給老師,其中一張面積為800cm2,另一張面積為450cm2,他想如果再用金彩帶把壁畫(huà)的邊鑲上會(huì)更漂亮,他現(xiàn)在有1.2m長(zhǎng)的金彩帶,請(qǐng)你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長(zhǎng)的金彩帶?(≈1.414,結(jié)果保留整數(shù))

數(shù)學(xué)二次根式教案2

  教學(xué)目標(biāo)

  1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;

  2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):含二次根式的式子的混合運(yùn)算.

  難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.

  教學(xué)過(guò)程設(shè)計(jì)

  一、復(fù)習(xí)

  1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來(lái),并說(shuō)明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來(lái).

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,

  計(jì)算結(jié)果要把分母有理化.

  3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡(jiǎn)及求值等問(wèn)題中,常運(yùn)用三個(gè)可逆的式子:

  二、例題

  例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

  (3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的`單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.

  x-2且x0.

  解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個(gè)二次根式的被開(kāi)方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因?yàn)?-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問(wèn):上面的代數(shù)式中的兩個(gè)二次根式的被開(kāi)方數(shù)的式子如何化為完全平方式?

  分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.

  注意:

  所以在化簡(jiǎn)過(guò)程中,

  例6

  分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習(xí)

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計(jì)算:

  四、小結(jié)

  1.本節(jié)課復(fù)習(xí)的五個(gè)基本問(wèn)題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過(guò)程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開(kāi)方數(shù)為非負(fù)數(shù),以確定被開(kāi)方數(shù)中的字母或式子的取值范圍.

  3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.

  4.通過(guò)例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問(wèn)題.

  五、作業(yè)

  1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡(jiǎn)二次根式:

數(shù)學(xué)二次根式教案3

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;

  2、會(huì)求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式

  教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過(guò)程:

  一、二次根式的混合運(yùn)算

  例1 計(jì)算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計(jì)算

  問(wèn):計(jì)算思路是什么?

  答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

  二、求代數(shù)式的值。 注意兩點(diǎn):

  (1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。

  例3 已知,求的值。

  分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母?墒褂(jì)算簡(jiǎn)便。

  例4 已知,求的值。

  觀察代數(shù)式的特點(diǎn),請(qǐng)說(shuō)出求這個(gè)代數(shù)式的值的思路。

  答:所求的`代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。

  三、小結(jié)

  1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。

  2、在代數(shù)式求值問(wèn)題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

數(shù)學(xué)二次根式教案4

  活動(dòng)1、提出問(wèn)題

  一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

  問(wèn)題:10+20是什么運(yùn)算?

  活動(dòng)2、探究活動(dòng)

  下列3個(gè)小題怎樣計(jì)算?

  問(wèn)題:1)-還能繼續(xù)往下合并嗎?

  2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的`進(jìn)行合并。

  活動(dòng)3

  練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。

  學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

  教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。

  我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導(dǎo)驗(yàn)證:

 、僭O(shè)=,類比合并同類項(xiàng)或面積法;

 、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

 、巯然(jiǎn),再合并

  學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。

  教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

  提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

數(shù)學(xué)二次根式教案5

  1、下列圖像中可能是反比例函數(shù)y=的圖像的共有()

  2、在同一直角坐標(biāo)系下,直線y=x+1與雙曲線y=的交點(diǎn)的個(gè)數(shù)為()

  A.0個(gè)B.1個(gè)C.2個(gè)D.不能確定

  3、反比例函數(shù)y=-的圖像是_______,該函數(shù)圖像在第_______象限。

  4、已知反比例函數(shù)y=的圖像經(jīng)過(guò)點(diǎn)(1,-2),則這個(gè)函數(shù)的表達(dá)式是_______.

  5、已知雙曲線y=經(jīng)過(guò)點(diǎn)(-1,2),那么k的值等于_______.

  6、在平面直角坐標(biāo)系中,分別畫(huà)出下列函數(shù)的圖像:

  (1)y=(2)y=-

  7、反比例函數(shù)y=的圖像經(jīng)過(guò)點(diǎn)(-2,3),則k的值為()

  A.6B.-6C.D.-

  8、反比例函數(shù)y=的圖像大致是()

  9、如圖,點(diǎn)P(-3,2)是反比例函數(shù)y=(k≠0)的圖像上

  一點(diǎn),則反比例函數(shù)的`解析式為()

  A.y=-B.y=-

  C.y=-D.y=-

  10、函數(shù)y=-的圖像上所有點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的乘積是_______.

  11、已知點(diǎn)P為函數(shù)y=圖像上一點(diǎn),且P到原點(diǎn)的距離為2,則符合條件的點(diǎn)P有__個(gè)

  12、分別在坐標(biāo)系中畫(huà)出下列函數(shù)的圖像:

  (1)y=(2)y=-

  13、反比例函數(shù)y=的圖像經(jīng)過(guò)點(diǎn)(-2,4),求它的解析式,并畫(huà)出函數(shù)圖像,圖像分布在哪幾個(gè)象限?

  14、設(shè)某一直角三角形的面積為18cm2,兩條直角邊的長(zhǎng)分別為x(cm),y(cm)。

 。1)寫(xiě)出y(cm)與x(cm)的函數(shù)關(guān)系式;

 。2)畫(huà)出該函數(shù)的圖像;

 。3)根據(jù)圖像,求解:①當(dāng)x=4cm時(shí),y的值;②x等于多少時(shí),該直角三角形是等腰直角三角形?

  參考答案

  1.B 2.C3.雙曲線二、四 4.y=- 5.-3 6.略

  7.C 8.C 9.D 10.-511.4 12.略 13.y=- 圖像略 分布在二、四象限 14.(1)y= (2)略(3)①y=9、趚=6

數(shù)學(xué)二次根式教案6

  教學(xué)設(shè)計(jì)思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.知道什么是二次根式,并會(huì)用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過(guò)程與方法

  通過(guò)二次根式的概念和性質(zhì)的'學(xué)習(xí),培養(yǎng)邏輯思維能力;

  情感態(tài)度價(jià)值觀

  1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);

  2.通過(guò)二次根式性質(zhì)的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點(diǎn):確定二次根式中字母的取值范圍。

  教學(xué)方法

  啟發(fā)式、講練結(jié)合

  教學(xué)媒體

  多媒體

  課時(shí)安排

  1課時(shí)

數(shù)學(xué)二次根式教案7

  一、教學(xué)目標(biāo)

  1.理解分母有理化與除法的關(guān)系.

  2.掌握二次根式的分母有理化.

  3.通過(guò)二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.

  4.通過(guò)學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

  二、教學(xué)設(shè)計(jì)

  小結(jié)、歸納、提高

  三、重點(diǎn)、難點(diǎn)解決辦法

  1.教學(xué)重點(diǎn):分母有理化.

  2.教學(xué)難點(diǎn):分母有理化的技巧.

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、多媒體

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主

  七、教學(xué)過(guò)程

  【復(fù)習(xí)提問(wèn)】

  二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.

  例1 說(shuō)出下列算式的運(yùn)算步驟和順序:

 。1) (先乘除,后加減).

 。2) (有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).

  (3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡(jiǎn)一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的`基本性質(zhì)).

  例如:等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?

  引入新課題.

  【引入新課】

  化簡(jiǎn)式子 ,乘以什么樣的式子,分母中的根式符號(hào)可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡(jiǎn).

  例2 把下列各式的分母有理化:

 。1) ; (2) ; (3)

  解:略.

  注:通過(guò)例題的講解,使學(xué)生理解和掌握化簡(jiǎn)的步驟、關(guān)鍵問(wèn)題、化簡(jiǎn)的依據(jù).式子的化簡(jiǎn),若分子與分母可分解因式,則可先分解因式,再約分,使化簡(jiǎn)變得簡(jiǎn)單.

數(shù)學(xué)二次根式教案8

  一、內(nèi)容和內(nèi)容解析

  1、內(nèi)容

  二次根式的概念。

  2、內(nèi)容解析

  本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開(kāi)方與乘方互為逆運(yùn)算的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的概念。它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ)。

  教材先設(shè)置了三個(gè)實(shí)際問(wèn)題,這些問(wèn)題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義。再通過(guò)例1討論了二次根式中被開(kāi)方數(shù)字母的取值范圍的問(wèn)題,加深學(xué)生對(duì)二次根式的定義的理解。

  本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

  二、目標(biāo)和目標(biāo)解析

  1、教學(xué)目標(biāo)

 。1)體會(huì)研究二次根式是實(shí)際的需要。

  (2)了解二次根式的概念。

  2、教學(xué)目標(biāo)解析

 。1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性。

 。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開(kāi)方數(shù)字母的取值范圍。

  三、教學(xué)問(wèn)題診斷分析

  對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解“的雙重非負(fù)性,”即被開(kāi)方數(shù)≥0是非負(fù)數(shù),的算術(shù)平方根≥0也是非負(fù)數(shù)。教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開(kāi)方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷。

  本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性。

  四、教學(xué)過(guò)程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問(wèn)題

  問(wèn)題1你能用帶有根號(hào)的的式子填空嗎?

  (1)面積為3的正方形的邊長(zhǎng)為_(kāi)______,面積為S的正方形的邊長(zhǎng)為_(kāi)______。

 。2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2倍,面積為130?,則它的寬為_(kāi)_____。

 。3)一個(gè)物體從高處自由落下,落到地面所用的.時(shí)間t(單位:s)與開(kāi)始落下的高度h(單位:)滿足關(guān)系h=5t?,如果用含有h的式子表示t,則t=_____。

  師生活動(dòng):學(xué)生獨(dú)立完成上述問(wèn)題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)。

  【設(shè)計(jì)意圖】讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性。

  問(wèn)題2上面得到的式子,,分別表示什么意義?它們有什么共同特征?

  師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根。

  【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊。

  2、抽象概括,形成概念

  問(wèn)題3你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

  師生活動(dòng):學(xué)生小組討論,全班交流。教師由此給出二次根式的定義:一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號(hào)。

  【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過(guò)程,培養(yǎng)學(xué)生的概括能力。

  追問(wèn):在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

  師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由。

  【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的理解。

  3、辨析概念,應(yīng)用鞏固

  例1當(dāng)時(shí)怎樣的實(shí)數(shù)時(shí),在實(shí)數(shù)范圍內(nèi)有意義?

  師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)的理解。

  例2當(dāng)是怎樣的實(shí)數(shù)時(shí),在實(shí)數(shù)范圍內(nèi)有意義?呢?

  師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問(wèn)。

  【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開(kāi)方數(shù)為非負(fù)數(shù)的理解。

  問(wèn)題4你能比較與0的大小嗎?

  師生活動(dòng):通過(guò)分和這兩種情況的討論,比較與0的大小,引導(dǎo)學(xué)生得出≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,

  【設(shè)計(jì)意圖】通過(guò)這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類討論和歸納概括的能力。

  4、綜合運(yùn)用,鞏固提高

  練習(xí)1完成教科書(shū)第3頁(yè)的練習(xí)。

  練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),下列各式有意義。

 。1);(2);(3);(4)。

  【設(shè)計(jì)意圖】辨析二次根式的概念,確定二次根式有意義的條件。

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維。

  5、總結(jié)反思

  教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題。

 。1)本節(jié)課你學(xué)到了哪一類新的式子?

  (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

 。3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié)。

  【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法。

  6。布置作業(yè):

  教科書(shū)習(xí)題16。1第1,3,5,7,10題。

  五、目標(biāo)檢測(cè)設(shè)計(jì)

  1、下列各式中,一定是二次根式的是()

  A。B。C。D。

  【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開(kāi)方數(shù)為非負(fù)數(shù)。

  2、當(dāng)時(shí),二次根式無(wú)意義。

  【設(shè)計(jì)意圖】考查二次根式無(wú)意義的條件,即被開(kāi)方數(shù)小于0,要注意審題。

  3、當(dāng)時(shí),二次根式有最小值,其最小值是。

  【設(shè)計(jì)意圖】本題主要考查二次根式被開(kāi)方數(shù)是非負(fù)數(shù)的靈活運(yùn)用。

  4、對(duì)于,小紅根據(jù)被開(kāi)方數(shù)是非負(fù)數(shù),得出的取值范圍是≥。小慧認(rèn)為還應(yīng)考慮分母不為0的情況。你認(rèn)為小慧的想法正確嗎?試求出的取值范圍。

  【設(shè)計(jì)意圖】考查二次根式的被開(kāi)方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮。

數(shù)學(xué)二次根式教案9

  教學(xué)內(nèi)容

  二次根式的加減

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):理解和掌握二次根式加減的方法.

  過(guò)程與方法目標(biāo):先提出問(wèn)題,分析問(wèn)題,在分析問(wèn)題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗(yàn),用它來(lái)指導(dǎo)根式的計(jì)算和化簡(jiǎn).

  情感與價(jià)值目標(biāo):通過(guò)本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力.

  重難點(diǎn)關(guān)鍵

  1.重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式.

  2.難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式.

  教法:

  1、引導(dǎo)發(fā)現(xiàn)法:通過(guò)教師精心設(shè)計(jì)的問(wèn)題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問(wèn)題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

  2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項(xiàng)進(jìn)行類比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。

  學(xué)法:

  1、類比的'方法通過(guò)觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。

  2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

  3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

  4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

  知識(shí)點(diǎn)

  自主檢測(cè)、同伴互查

  1、師生共同解決“學(xué)法”問(wèn)題與13頁(yè)“練習(xí)1”;

  2、學(xué)生演板13頁(yè)“練習(xí)2、3”。

  四、知識(shí)梳理、師生共議

  1、談收獲:

  (1)二次根式的加減法則是什么?有哪些運(yùn)算步驟?

  (2)怎樣合并被開(kāi)方數(shù)相同的二次根式呢?

  (3)二次根式進(jìn)行加減運(yùn)算時(shí)應(yīng)注意什么問(wèn)題?

  2、說(shuō)不足:。

  五、作業(yè)訓(xùn)練、鞏固提高

  1、必做題:課本15頁(yè)的“習(xí)題2、3”;

  課時(shí)練習(xí)

  1.揭示學(xué)法、自主學(xué)習(xí)

  認(rèn)真閱讀課本14頁(yè)內(nèi)容,完成下列任務(wù):

  1、完成14頁(yè)“例3、4”,先做再對(duì)照:

  (1)平方差公式__________,完全平方公式__________.

  (2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問(wèn)題?

  (時(shí)間7分鐘若有困難,與同伴討論)

  三、自主檢測(cè)、同伴互查

  1、師生共同解決“學(xué)法”問(wèn)題;

  2、學(xué)生演板14頁(yè)“練習(xí)1、2”。

  四、知識(shí)梳理、師生共議

  1、談收獲:

  (1)二次根式進(jìn)行混合運(yùn)算時(shí)運(yùn)用了哪些知識(shí)?

  (2)二次根式進(jìn)行混合運(yùn)算時(shí)應(yīng)注意哪些問(wèn)題?

數(shù)學(xué)二次根式教案10

  一、教學(xué)目標(biāo)

  1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。

  2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。

  3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問(wèn)題中的應(yīng)用。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。

  2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。

  三、教學(xué)方法

  通過(guò)實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過(guò)解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。

  四、教學(xué)手段

  利用投影儀。

  五、教學(xué)過(guò)程

 。ㄒ唬┮胄抡n

  提出問(wèn)題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的近似值?

  了。這樣會(huì)給解決實(shí)際問(wèn)題帶來(lái)方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問(wèn)題創(chuàng)

  這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開(kāi)方數(shù)的因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開(kāi)方數(shù)中還有沒(méi)有開(kāi)得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的'二次根式,叫做最簡(jiǎn)二次根式:

  1。被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡(jiǎn)二次根式,并說(shuō)明為什么。

  分析:

  說(shuō)明:這里可以向?qū)W生說(shuō)明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。

  例2 把下列各式化成最簡(jiǎn)二次根式:

  說(shuō)明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開(kāi)方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開(kāi)方數(shù)或被開(kāi)方式分解因數(shù)或分解因式,然后把開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。

  例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:

  說(shuō)明:

  1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開(kāi)方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。

  2。要提問(wèn)學(xué)生

  問(wèn)題,通過(guò)這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。

  通過(guò)例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問(wèn)題。

  注意:

 、倩(jiǎn)時(shí),一般需要把被開(kāi)方數(shù)分解因數(shù)或分解因式。

  ②當(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

  (三)小結(jié)

  1。滿足什么條件的根式是最簡(jiǎn)二次根式。

  2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。

  (四)練習(xí)

  1。指出下列各式中的最簡(jiǎn)二次根式:

  2。把下列各式化成最簡(jiǎn)二次根式:

  六、作業(yè)

  教材P。187習(xí)題11。4;A組1;B組1。

  七、板書(shū)設(shè)計(jì)

數(shù)學(xué)二次根式教案11

  一、學(xué)習(xí)目標(biāo):

  1.多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用.

  2.多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理.

  二、重點(diǎn)難點(diǎn):

  重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用

  難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過(guò)程

  三、合作學(xué)習(xí):

  (一)回顧單項(xiàng)式除以單項(xiàng)式法則

  (二)學(xué)生動(dòng)手,探究新課

  1.計(jì)算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提問(wèn):①說(shuō)說(shuō)你是怎樣計(jì)算的②還有什么發(fā)現(xiàn)嗎?

  (三) 總結(jié)法則

  1.多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以___________,再把所得的商______

  2.本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成______________

  四、精講精練

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  隨堂練習(xí):教科書(shū)練習(xí)

  五、小結(jié)

  1、單項(xiàng)式的除法法則

  2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:

  A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運(yùn)算過(guò)程中注意單項(xiàng)式的系數(shù)飽含它前面的符號(hào)

  B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

  C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;

  D、要注意運(yùn)算順序,有乘方要先做乘方,有括號(hào)先算括號(hào)里的,同級(jí)運(yùn)算從左到右的順序進(jìn)行.

  E、多項(xiàng)式除以單項(xiàng)式法則

  第三十四學(xué)時(shí):14.2.1平方差公式

  一、學(xué)習(xí)目標(biāo):

  1.經(jīng)歷探索平方差公式的.過(guò)程.

  2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算.

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用

  難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

  三、合作學(xué)習(xí)

  你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

  (1)20xx×1999 (2)998×1002

  導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精講精練

  例1:運(yùn)用平方差公式計(jì)算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:計(jì)算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  隨堂練習(xí)

數(shù)學(xué)二次根式教案12

  一、教學(xué)過(guò)程

 。ㄒ唬⿵(fù)習(xí)提問(wèn)

  1.什么叫二次根式?

  2.下列各式是二次根式,求式子中的字母所滿足的條件:

 。3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).

 。ǘ┒胃降暮(jiǎn)單性質(zhì)

  上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡(jiǎn)單性質(zhì)

  我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。將符號(hào)看作開(kāi)平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開(kāi)平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:

  這里需要注意的是公式成立的條件是a≥0,提問(wèn)學(xué)生,a可以代表一個(gè)代數(shù)式嗎?

  請(qǐng)分析:引導(dǎo)學(xué)生答如時(shí)才成立。

  時(shí)才成立,即a取任意實(shí)數(shù)時(shí)都成立。

  我們知道

  如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方形式了.

  例1計(jì)算:

  分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。其中(2)、(3)、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說(shuō)明,這與帶分?jǐn)?shù)。因此,以后遇到,應(yīng)寫(xiě)成,而不宜寫(xiě)成。

  例2把下列非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式:

 。1)5;(2)11;(3)1。6;(4)0。35.

  例3把下列各式寫(xiě)成平方差的形式,再分解因式:

  (1)4x2—1;(2)a4—9;

 。3)3a2—10;(4)a4—6a2+9.

  解:(1)4x2—1

  =(2x)2—12

  =(2x+1)(2x—1).

  (2)a4—9

  =(a2)2—32

  =(a2+3)(a2—3)

 。3)3a2—10

  (4)a4—6a2+32

  =(a2)2—6a2+32

  =(a2—3)2

 。ㄈ┬〗Y(jié)

  1.繼續(xù)鞏固二次根式的定義,及二次根式中被開(kāi)方數(shù)的取值范圍問(wèn)題.

  2.關(guān)于公式的.應(yīng)用。

 。1)經(jīng)常用于乘法的運(yùn)算中.

 。2)可以把任何一個(gè)非負(fù)數(shù)寫(xiě)成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問(wèn)題.

 。ㄋ模┚毩(xí)和作業(yè)

  練習(xí):

  1.填空

  注意第(4)題需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

  2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:

  分析:通過(guò)本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.

  3.計(jì)算

  二、作業(yè)

  教材P.172習(xí)題11.1;A組2、3;B組2.

  補(bǔ)充作業(yè):

  下列各式中的字母滿足什么條件時(shí),才能使該式成為二次根式?

  分析:要使這些式成為二次根式,只要被開(kāi)方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:

  (1)由—|a—2b|≥0,得a—2b≤0,

  但根據(jù)絕對(duì)值的性質(zhì),有|a—2b|≥0,

  ∴|a—2b|=0,即a—2b=0,得a=2b.

 。2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

  ∴(m2+1)(m—n)≤0,又m2+1>0,

  ∴ m—n≤0,即m≤n.

  說(shuō)明:本題求解較難些,但基本方法仍是由二次根式中被開(kāi)方數(shù)(式)大于或等于零列出不等式.通過(guò)本題培養(yǎng)學(xué)生對(duì)于較復(fù)雜的題的分析問(wèn)題和解決問(wèn)題的能力,并且進(jìn)一步鞏固二次根式的概念.

  三、板書(shū)設(shè)計(jì)

數(shù)學(xué)二次根式教案13

  【學(xué)習(xí)目標(biāo)】

  1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。

  2、過(guò)程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。

  【學(xué)習(xí)重難點(diǎn)】

  1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。

  2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

  【學(xué)習(xí)內(nèi)容】課本第2—3頁(yè)

  【學(xué)習(xí)流程】

  一、課前準(zhǔn)備(預(yù)習(xí)學(xué)案見(jiàn)附件1)

  學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

  二、課堂教學(xué)

 。ㄒ唬┖献鲗W(xué)習(xí)階段。

  教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1、各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

  2、教師對(duì)合作學(xué)習(xí)中存在的普遍的'不能解決的問(wèn)題進(jìn)行集體講解。

  3、各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。

  (三)當(dāng)堂檢測(cè)階段

  為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

  三、課后作業(yè)(課后作業(yè)見(jiàn)附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

  四、板書(shū)設(shè)計(jì)

數(shù)學(xué)二次根式教案14

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過(guò)二次根式性質(zhì) 和 的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點(diǎn):確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過(guò)程

  (一)復(fù)習(xí)提問(wèn)

  1.什么叫平方根、算術(shù)平方根?

  2.說(shuō)出下列各式的意義,并計(jì)算:

  通過(guò)練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個(gè)式子的.特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對(duì)于 請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個(gè)是二次根式. 因?yàn)閍是實(shí)數(shù)時(shí),a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時(shí),a+10又如當(dāng)0

  例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?

  解:略.

  說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時(shí),下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.

  (2)-3x0,x0,即x0時(shí), 是二次根式.

  (3) ,且x0,x0,當(dāng)x0時(shí), 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時(shí), 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).

  (4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.

  2.式子中,被開(kāi)方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無(wú)意義.

  2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書(shū)設(shè)計(jì)

數(shù)學(xué)二次根式教案15

  1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?

  2.學(xué)生觀察下面的例子,并計(jì)算:

  由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

  類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過(guò)程.

  類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,

  請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?

  與學(xué)生一起寫(xiě)清解題過(guò)程,提醒他們被開(kāi)方式一定要開(kāi)盡.

  對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

  增強(qiáng)學(xué)生的自信心,并從一開(kāi)始就使他們參與到推導(dǎo)過(guò)程中來(lái).

  對(duì)學(xué)生進(jìn)一步強(qiáng)化被開(kāi)方數(shù)的取值范圍,以及分母不能為零.

  強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

  教學(xué)過(guò)程設(shè)計(jì)

  問(wèn)題與情境師生行為設(shè)計(jì)意圖

  活動(dòng)二自我檢測(cè)

  活動(dòng)三挑戰(zhàn)逆向思維

  把反過(guò)來(lái),就得到

 。ā0,b0)

  利用它就可以進(jìn)行二次根式的化簡(jiǎn).

  例2化簡(jiǎn):

  (1)

 。2)(b≥0).

  解:(1)(2)練習(xí)2化簡(jiǎn):

 。1)(2)活動(dòng)四談?wù)勀愕氖斋@

  1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

  2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

  找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.

  二次根式的`乘法公式可以逆用,那除法公式可以逆用嗎?

  找學(xué)生口述解題過(guò)程,教師將過(guò)程寫(xiě)在黑板上.

  請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.

  請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

  為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.

  此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.

  讓學(xué)困生在自己做題時(shí)有一個(gè)參照.

  充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問(wèn)題解決.

【數(shù)學(xué)二次根式教案】相關(guān)文章:

數(shù)學(xué)二次根式教案02-15

數(shù)學(xué)最簡(jiǎn)二次根式教案12-30

數(shù)學(xué)二次根式教案(15篇)02-15

二次根式教學(xué)反思03-22

二次根式的教學(xué)反思01-15

二次根式的加減教學(xué)反思03-22

《二次根式的除法》教學(xué)反思03-05

二次根式加減的教學(xué)設(shè)計(jì)11-03

二次根式的乘除教學(xué)反思04-15