国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現在位置:范文先生網>教案大全>數學教案>七年級數學教案>初一數學上冊的教案

初一數學上冊的教案

時間:2023-02-06 17:14:44 七年級數學教案 我要投稿

初一數學上冊的教案(通用15篇)

  作為一位杰出的教職工,就不得不需要編寫教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么問題來了,教案應該怎么寫?下面是小編為大家收集的初一數學上冊的教案,歡迎大家分享。

初一數學上冊的教案(通用15篇)

初一數學上冊的教案1

  一、知識要點

  本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎知識:

  1、大于0的數叫做正數。

  2、在正數前面加上負號“-”的數叫做負數。

  3、0既不是正數也不是負數。

  4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。

  5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。

  數軸滿足以下要求:

  (1)在直線上任取一個點表示數0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

  (3)選取適當的長度為單位長度。

  6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。

  7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。

  由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。

  一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.

  正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的反而小。

  8、有理數加法法則

  (1)同號兩數相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.

  (3)一個數同0相加,仍得這個數。

  加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。

  加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。

  表達式:(a+b)+c=a+(b+c)

  9、有理數減法法則

  減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)

  10、有理數乘法法則

  兩數相乘,同號得正,異號得負,并把絕對值相乘。

  任何數同0相乘,都得0.

  乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba

  乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)

  乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。

  表達式:a(b+c)=ab+ac

  11、倒數

  1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那么這兩個數的積等于1。

  12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.

  13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。

  根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。

  14、有理數的混合運算順序

  (1)“先乘方,再乘除,最后加減”的順序進行;

  (2)同級運算,從左到右進行;

  (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  15、科學技術法:把一個大于10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即0

  16、近似數(approximatenumber):

  17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。

  拓展知識:

  1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。

  一、(1)所有有理數組成的數集叫做有理數集;

  二、(2)所有的整數組成的數集叫做整數集。

  2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。

  3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。

  4、比較兩個有理數大小的方法有:

  (1)根據有理數在數軸上對應的點的位置直接比較;

  (2)根據規(guī)定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;

  (3)做差法:a-b>0a>b;

  (4)做商法:a/b>1,b>0a>b.

  二、基礎訓練

  選擇題

  1、下列運算中正確的是().

  A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

  2、下列各判斷句中錯誤的是()

  A.數軸上原點的位置可以任意選定

  B.數軸上與原點的距離等于個單位的點有兩個

  C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示

  D.數軸上無論怎樣靠近的兩個表示有理數的點之間,一定還存在著表示有理數的點。

  3、、是有理數,若>且,下列說法正確的是()

  A.一定是正數B.一定是負數C.一定是正數D.一定是負數

  4、兩數相加,如果比每個加數都小,那么這兩個數是()

  A.同為正數B.同為負數C.一個正數,一個負數D.0和一個負數

  5、兩個非零有理數的和為零,則它們的商是()

  A.0B.-1C.+1D.不能確定

  6、一個數和它的倒數相等,則這個數是()

  A.1B.-1C.±1D.±1和0

  7、如果|a|=-a,下列成立的.是()

  A.a>0B.a<0c.a>0或a=0D.a<0或a=0

  8、(-2)11+(-2)10的值是()

  A.-2B.(-2)21C.0D.-210

  9、已知4個礦泉水空瓶可以換礦泉水一瓶,現有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()

  A.3瓶B.4瓶C.5瓶D.6瓶

  10、在下列說法中,正確的個數是()

 、湃魏我粋有理數都可以用數軸上的一個點來表示

  ⑵數軸上的每一個點都表示一個有理數

 、侨魏斡欣頂档慕^對值都不可能是負數

  ⑷每個有理數都有相反數

  A、1B、2C、3D、4

  11、如果一個數的相反數比它本身大,那么這個數為()

  A、正數B、負數

  C、整數D、不等于零的有理數

  12、下列說法正確的是()

  A、幾個有理數相乘,當因數有奇數個時,積為負;

  B、幾個有理數相乘,當正因數有奇數個時,積為負;

  C、幾個有理數相乘,當負因數有奇數個時,積為負;

  D、幾個有理數相乘,當積為負數時,負因數有奇數個;

  填空題

  1、在有理數-7,,-(-1.43),,0,,-1.7321中,是整數的有_____________是負分數的有_______________。

  2、一般地,設a是一個正數,則數軸上表示數a的點在原點的____邊,與原點的距離是____個單位長度;表示數-a的點在原點的____邊,與原點的距離是____個單位長度。

  3、如果一個數是6位整數,用科學記數法表示它時,10的指數是_____;用科學記數法表示一個n位整數,其中10的指數是___________.

  4、實數a、b、c在數軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.

  5、絕對值大于1而小于4的整數有_____________________________________,其和為___________.

  6、若a、b互為相反數,c、d互為倒數,則(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6+……+20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理數是___________,立方等于它本身的有理數是_____________.

  10、用四舍五入法把3.1415926精確到千分位是,用科學記數法表示302400,應記為,近似數3.0×精確到位。

  11、正數–a的絕對值為__________;負數–b的絕對值為________

  12、甲乙兩數的和為-23.4,乙數為-8.1,甲比乙大

  13、在數軸上表示兩個數,的數總比的大。(用“左邊”“右邊”填空)

  14、數軸上原點右邊4.8厘米處的點表示的有理數是32,那么,數軸左邊18厘米處的點表示的有理數是____________。

  三、強化訓練

  1、計算:1+2+3+…+20xx+2003=__________.

  2、已知:若(a,b均為整數)則a+b=

  3、觀察下列等式,你會發(fā)現什么規(guī)律:,,,。。。請將你發(fā)現的規(guī)律用只含一個字母n(n為正整數)的等式表示出來

  4、已知,則___________

  5、已知是整數,是一個偶數,則a是(奇,偶)

  6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

  7、在數1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數是多少?請列出算式解答。

  8、如果有理數a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。

  9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。

  例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

  星期一二三四五

  每股漲跌+4+4.5-1-2.5-6

  第1章(1)星期三收盤時,每股是多少元?

  第2章(2)本周內最高價是每股多少元?最低價是多少元?

  第3章(3)已知買進股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

  第4章(4)以買進的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。

  四、競賽訓練:

  1、最小的非負有理數與最大的非正有理數的和是

  2、乘積=

  3、比較大。篈=,B=,則A B

  4、滿足不等式104≤A≤105的整數A的個數是x×104+1,則x的值是( )

  A、9 B、8 C、7 D、6

  5、最小的一位數的質數與最小的兩位數的質數的積是( )

  A、11 B、22 C、26 D、33

  6、比較

  7、計算:

  8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

  9、計算:

  10、計算

  11、計算1+3+5+7+…+1997+1999的值

  12、計算1+5+52+53+…+599+5100的值.

  13、有理數均不為0,且設試求代數式20xx之值。

  14、已知a、b、c為實數,且,求的值。

  15、已知:。

  16、解方程組。

  17、若a、b、c為整數,且,求的值。

  1.2.1有理數

  七年級上(1.1正數和負數,1.2有理數)

  1.2有理數

初一數學上冊的教案2

  一:教材分析:

  1:教材所處的地位和作用:

  本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節(jié)的重點和難點,同時也是本章節(jié)的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養(yǎng)他們對數學的興趣

  以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。

  2:教育教學目標:

 。1)知識目標:

 。ˋ)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。

 。˙)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。

 。2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。

 。3)思想目標:

  通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。

  3:重點,難點以及確定的依據:

  根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的.理解難度大。

  二:學情分析:(說學法)

  1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。

  2:學生在列方程解應用題時,可能存在三個方面的困難:

 。1)抓不準相等關系;

  (2)找出相等關系后不會列方程;

 。3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。

  3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。

  4:學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。

  5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。

  三:教學策略:(說教法)

  如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:

  1:“讀(看)——議——講”結合法

  2:圖表分析法

  3:教學過程中堅持啟發(fā)式教學的原則

  教學的理論依據是:

  1:必須先明確根據應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。

  2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有X千克面粉”寫成“設原來有X”。另外,在列方程中,各代數式的單位應該是相同的,如例1中,代數式“X 字串7 ”“—15%X”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。

  3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。

  4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。

  5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。

  四:教學程序:

 。ㄒ唬赫n堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。

 。ǘ航虒W簡要過程:

  1:復習提問:

 。1):什么叫做等式?

 。2):等式與方程之間有哪些關系?

  (3):求X的15%的代數式。

 。4):敘述代數式與方程的區(qū)別。

  (理由是:通過復習加深學生對等式,方程,代數式之間關系的理解,有利于學生熟練正確根據題意列出一元一次方程,從而有利降低本節(jié)的難度。)

  2:導入講授新課:

 。1):教具:

  一塊小黑板,抄212例1題目及相對應的空表格。

  左邊右邊

 。2):新課引述:

 。3):講述課文212例1:

 。康氖牵阂髮W生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。)

  指導學生設原來重量為X千克。這里分析等式左邊:原來重量為X千克,運出重量為15%X千克,把以上填入表格左邊。 字串7 分析等式右邊:剩余重量為42500千克,填入表格右邊。

 。康氖牵和ㄟ^分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數和列代數式,有利于降低列方程解應用題的難度)

  把以上左邊和右邊的代數式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。

  同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。

  結合解題過程向學生介紹一元一次應用題解法的一般步驟:

  課本215黑體字

  3:課堂練習:

  課文216練習1,2題

 。康氖牵鹤寣W生通過適當的模仿例題的解題思想方法從而加深對本課的內容的理解掌握。)

  4:新課鞏固:

  學生對本節(jié)內容進行要小結:

  列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。

 。康模鹤寣W生加深對應用題的解法的認識和該注意事項的重視。)

  5:作業(yè)布置:

  課文221習題4-4(1)A組1,2,3題

 。康模涸谟跈z驗學生對本節(jié)內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)

  五:板書設計:

  4*4一元一次方程的應用:

  例題:小黑板出示例1題目解:設原來有X千克面粉,那么運

  相等關系:原來重量—運出重量=剩余重量出了15%X千克,依題意,得

  等式左邊:等式右邊:X—15%X=42500

  原來重量為X千克,剩余重量為42500千克。解這個方程:

  運出重量為15%X千克。85/100*X=42500

  解一元一次方程的一般步驟:X=50000(千克)

  小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。

初一數學上冊的教案3

  【教學目標】

  1、經歷探索去括號法則的過程,了解去括號法則的依據。

  2、會用去括號進行簡單的計算。

  3、經歷觀察、歸納等教學活動,培養(yǎng)學生合作精神和探究問題的能力。

  【重、難點】

  理解去括號法則,熟練運用去括號法則。

  【教學過程】

  一、情境創(chuàng)設

  在假期的勤工儉學活動中,小亮從報社以每份0。4元的價格購進a份報紙,以每份0。5元的價格賣出b份(b≤a)報紙,剩余的報紙以每份0。2元的價格退回報社,小亮贏利多少元?

  思考:如何合并你算出的這個代數式中的同類項?

  同步測試

  1、七年級(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人數多。試回答下列問題。(用代數式來表示,能化簡的化簡)

  (1)女生有多少人?

 。2)男生比女生多多少人?

  (3)全班共有多少人?

  測試

  【拓展提優(yōu)】

  14、如果A是三次多項式,B是三次多項式,那么A+B一定是()

  A、六次多項式

  B、次數不高于3的整式

  C、三次多項式

  D、次數不低于3的整式

  15、多項式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()

  A、與x、y、z均有關

  B、與x有關,而與y、z無關

  C、與x、y有關,而與z無關

  D、與x、y、z均無關

  16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的`值等于()

  A、4 B、6 C、8 D、10

  17、當x=1時,代數式mx3+nx+1的值為20xx,則當x=—1時,代數式mx3+nx+1的值為()

  A、—20xx B、—20xx C、—20xx D、—20xx

  18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,則8a2—13ab—15b2等于()

  A、2M—N B、3M—2N C、4M—N D、2M—3N

  19、把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示。則圖②中兩塊陰影部分的周長和是()

  A、4m cm B、4n cm

  C、2(m+n)cm D、4(m—n)cm

初一數學上冊的教案4

  教學目標

  教學知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.

  能力訓練要求:1.學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念.

  2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.

  情感與價值觀要求:1.通過有趣的問題提高學習數學的興趣.

  2.在解決實際問題的過程中,體驗數學學習的實用性,體現人人都學有用的數學.

  教學重點難點:

  重點:探索、發(fā)現給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

  難點:利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

  教學過程

  1、創(chuàng)設問題情境,引入新課:

  前幾節(jié)課我們學習了勾股定理,你還記得它有什么作用嗎?

  例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?

  根據題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

  所以至少需13米長的.梯子.

  2、講授新課:①、螞蟻怎么走最近

  出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).

  (1)同學們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)

  (2)如圖,將圓柱側面剪開展開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?

  (3)螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?(學生分組討論,公布結果)

  我們知道,圓柱的側面展開圖是一長方形.好了,現在咱們就用剪刀沿母線AA′將圓柱的側面展開(如下圖).

  我們不難發(fā)現,剛才幾位同學的走法:

  (1)A→A′→B;(2)A→B′→B;

  (3)A→D→B;(4)A—→B.

  哪條路線是最短呢?你畫對了嗎?

  第(4)條路線最短.因為“兩點之間的連線中線段最短”.

 、、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.

 、、隨堂練習

  出示投影片

  1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先出發(fā),他以6千米/時的速度向東行走.1時后乙出發(fā),他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠?

  2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應有多長?

  1.分析:首先我們需要根據題意將實際問題轉化成數學模型.

  解:(如圖)根據題意,可知A是甲、乙的出發(fā)點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).

  在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.

  2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.

  解:設伸入油桶中的長度為x米,則應求最長時和最短時的值.

  (1)x2=1.52+22,x2=6.25,x=2.5

  所以最長是2.5+0.5=3(米).

  (2)x=1.5,最短是1.5+0.5=2(米).

  答:這根鐵棒的長應在2~3米之間(包含2米、3米).

  3.試一試(課本P15)

  在我國古代數學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦的長度各為多少?

  我們可以將這個實際問題轉化成數學模型.

  解:如圖,設水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得

  (x+1)2=x2+52,x2+2x+1=x2+25

  解得x=12

  則水池的深度為12尺,蘆葦長13尺.

 、、課時小結

  這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發(fā)現用數學知識解決這些實際問題,更為重要的是將它們轉化成數學模型.

 、荨⒄n后作業(yè)

  課本P25、習題1.52

初一數學上冊的教案5

  (1)常見的幾何體;

  (2)構成圖形的基本元素——點、線、面及點、線與平面

  圖形的一些簡單性質;點動成線,線動成面,面動成體

  (3)棱柱的特征;并注意棱柱和圓柱的聯系與區(qū)別

  (4)長方體、正方體的表面沿某些棱展開的平面圖形及圓

  柱、圓錐的側面展開圖;

  (5)用一個平面去截一個幾何體,截面的形狀;

  (6)物體的三視圖,立方體及其簡單組合的三視圖;

  (7)生活中的平面圖形.

  一.填空:

  1.這個幾何體的名稱是______;它有_____個面組成;它有____個頂點;經過每個頂點有____條邊。

  2.正方體或長方體是一個立體圖形,它是由______個面,______條棱,_____個頂點組成的.

  3.在①長方體、②球、③圓錐、④圓柱、⑤三棱柱這五種幾何體中,其主視圖、左視圖、俯視圖都完全相同的是(填上序號即可)

  4.一個棱柱有十個頂點,且所有側棱的和為30cm,則每條側棱長為cm.

  5.將下面4個圖用紙復制下來,然后沿所畫線折起來,把折成的立體圖形名稱寫在圖的下邊橫線上:

  6.如圖是一些相同的正方塊構成的立體圖形的三視圖,則構成這個立體圖形的小方塊數為.

  7.如圖所示,木工師傅把一個長為1.6米的長方體木料鋸成3段后,表面積比原來增加了

  80,那么這根木料本來的體積是

  8.要把一個長方體的表面剪開展成平面圖形,至少需要剪開________條棱.

  9.如圖,截去正方體一角變成一個多面體,這個多面體有____個面,____條棱.

  10.若要使圖中平面展開圖按虛線折疊成正方體后,相對面上兩個數之和為6,x=____,y=____.

  11.四棱柱按如圖粗線剪開一些棱,展成平面圖形,請畫出平面圖來:

  12.薄薄的硬幣在桌面上轉動時,看上去象球,這說明了_____________.

  13.右圖中,三角形共有個。

  14.如圖是用邊長為1的小正方體擺放成的一個幾何體的三視圖,這個幾何體的表面積為。

  第13題主視圖俯視圖左視圖

  二:選擇題(每題4分,共24分).

  15.桌上擺滿了朋友們送來的禮物,小狗貝貝好奇地想看個究竟.

  Pqmn

 、傩」废仁钦驹诘孛嫔峡,②然后抬起了前腿看,③唉,還是站到凳子上看吧,④最后,

  它終于爬上了桌子………按小狗四次看禮物的順序,四個畫面的順序為()

  A.mnpqB.qnmpC.pqmnD.mnqp

  16.以下四個平面圖形中,不是正方體的展開圖的是()

  ABCD

  17.只有蓋的盒子長、寬、高分別為5、5、3cm,如圖所示,有一只螞蟻從A點出

  發(fā),沿棱爬行,爬行的路徑不許重復,則螞蟻回到A點時,最多爬行()

  A.24cmB.32cmC.34cmD.48cm

  18.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖

  如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()

  A.12個B.13個C.14個D.18個

  19.把一個正方體截去一個角,剩下的幾何體最多有幾個面()

  A.5個面B.6個面C.7個面D.8個面

  20.從多邊形一條邊上的`一點(不是頂點)發(fā)出發(fā),連接各個頂點得

  到20xx個三角形,則這個多邊形的邊數為().

  A.20xxB.20xxC.20xxD.20xx

  21.下列四個圖形折疊后與所得的正方體的各個面上所標數字一致的是()

  22.如圖(1)是正方體表面積展開圖,如果將其折回原來的

  正方體圖(2)時,與點P重合的兩點應該是()

  A.S和ZB.T和Y

  C.U和YD.T和V

  23.用一個平面去截①圓錐;②圓柱;③球;④五棱柱,能得到截面是圓的圖形是()

  A.①②④ B.①②③ C.②③④ D.①③④

  24.如圖是正方體的表面展開圖,折疊成正方體后,其中哪兩個完全相同()

  A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

  25.從多邊形一個頂點處出發(fā),連接各個頂點得到20xx個三角形,

  則這個多邊形的邊數為()

  A.20xxB.20xxC.20xxD.20xx

初一數學上冊的教案6

  初一上冊數學教案,歡迎各位老師和學生參考!

  學習目標:1、理解有理數的絕對值和相反數的意義。

  2、會求已知數的相反數和絕對值。

  3、會用絕對值比較兩個負數的大小。

  4、經歷將實際問題數學化的過程,感受數學與生活的聯系。

  學習重點:1.會用絕對值比較兩個負數的大小。

  2.會求已知數的相反數和絕對值。

  學習難點:理解有理數的絕對值和相反數的意義。

  學習過程:

  一、創(chuàng)設情境

  根據絕對值與相反數的意義填空:

  1、

  2、

  -5的相反數是______,-10.5的相反數是______, 的相反數是______;

  3、|0|=______,0的相反數是______。

  二、探索感悟

  1、議一議

  (1)任意說出一個數,說出它的絕對值、它的相反數。

  (2)一個數的絕對值與這個數本身或它的`相反數有什么關系?

  2、想一想

  (1)2與3哪個大?這兩個數的絕對值哪個大?

  (2)-1與-4哪個大?這兩個數的絕對值哪個大?

  (3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?

  (4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?

  三.例題精講

  例1. 求下列各數的絕對值:

  +9,-16,-0.2,0.

  求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。

  議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?

  (2)數軸上的點的大小是如何排列的?

  例2比較-10.12與-5.2的大小。

  例3.求6、-6、14 、-14 的絕對值。

  小節(jié)與思考:

  這節(jié)課你有何收獲?

  四.練習

  1. 填空:

  ⑴ 的符號是 ,絕對值是 ;

  ⑵10.5的符號是 ,絕對值是

 、欠柺+號,絕對值是 的數是

  ⑷符號是-號,絕對值是9的數是 ;

 、煞柺-號,絕對值是0.37的數是 .

  2. 正式足球比賽時所用足球的質量有嚴格的規(guī)定,下表是6個足球的質量檢測結果(用正數記超過規(guī)定質量的克數,用負數記不足規(guī)定質量的克數).

  請指出哪個足球質量最好,為什么?

  第1個第2個第3個第4個第5個第6個

  -25-10+20+30+15-40

  3.比較下面有理數的大小

  (1)-0.7與-1.7 (2) (3) (4)-5與0

  五、布置作業(yè):

  P25 習題2.3 5

  家庭作業(yè):《評價手冊》 《補充習題》

  六、學后記/教后記

  這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!

初一數學上冊的教案7

  教學目標:

  知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。

  過程與方法:通過本節(jié)的學習,培養(yǎng)學生正確的分類討論觀點和分類能力。

  情感、態(tài)度、價值觀:通過本節(jié)課的學習,體驗成功的喜悅,保持學好數學的信心。

  教學重點:掌握有理數的兩種分類方法

  教學難點:給定的數字將被填入它所屬的'集合中

  教學方法:問題導向法

  學習方法:自主探究法

  一、形勢歸納

  小學我們學了整數和分數,上節(jié)課我們學了正數和負數。誰能快速提出以下問題?

  1.有以下數字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?

  (2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?

  稱整數和分數為有理數。(指點題,板書)

  二、自學指導

  學生自學課本,根據課本尋找自學的機會

  提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

  附:自學提綱:

  1.___________、____、_______統(tǒng)稱為整數,

  2._______和_________統(tǒng)稱為分數

  3.____ ______統(tǒng)稱為有理數,

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數: 、分數:;正整數:、負整數: 、正分數: 、負分數:.

  三、展示歸納

  1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;

  2、發(fā)動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;

  3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。

  四、變式練習

  逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據需要進行重點強調。

  1.整數可分為:_____、______和_______,分數可分為:_______和_________.有理數按符號不同可分為正有理數,_______和________.

  2.判斷下列說法是否正確,并說明理由。

  (1)有理數包括有整數和分數.

  (2)0.3不是有理數.

  (3)0不是有理數.

  (4)一個有理數不是正數就是負數.

  (5)一個有理數不是整數就是分數

  3.所有的正整數組成正整數集合,所有負整數組成負整數集合,依次類推有正數集合、負數集合、整數集合、分數集合等,把下面的有理數填入它屬于的集合中(大括號內,將各數用逗號分開):

  楊桂花:1.2.1有理數教學設計

  正數集合:{ …}負數集合:{ …}

  正整數集合:{ …}負分數集合:{ …}

  4.下列說法正確的是( )

  A.0是最小的正整數

  B.0是最小的有理數

  C.0既不是整數也不是分數

  D. 0既不是正數也不是負數

  5、下列說法正確的有( )

  (1)整數就是正整數和負整數(2)零是整數,但不是自然數(3)分數包括正分數和負分數(4)正數和負數統(tǒng)稱為有理數(5)一個有理數,它不是整數就是分數

  五、總結與反思:通過本節(jié)課的學習,你有什么收獲?

  六、作業(yè):必做題:課本14頁:1、9題

初一數學上冊的教案8

  一、等式的概念和性質

  1.等式的概念,用等號“=”來表示相等關系的式子,叫做等式. 在等式中,等號左、右兩邊的式子,分別叫做這個等式的左邊、右邊.等式可以是數字算式,可以是公式、方程,也可以是用式子表示的運算律、運算法則.

  2.等式的類型楷體五號

  (1)恒等式:無論用什么數值代替等式中的字母,等式總能成立.如:數字算式 .

  (2)條件等式:只能用某些數值代替等式中的字母,等式才能成立.方程 需要 才成立.

  (3)矛盾等式:無論用什么數值代替等式中的字母,等式都不能成立.如 , .

  注意:等式由代數式構成,但不是代數式.代數式沒有等號.體五號

  3.等式的性質五號

  等式的性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式.若 ,則 ;

  等式的性質2:等式兩邊都乘以(或除以)同一個數(除數不能是0)或同一個整式,所得結果仍是等式.若 ,則 , .

  注意:

  (1)在對等式變形過程中,等式兩邊必須同時進行.即:同時加或同時減,同時乘以或同時除以,不能漏掉某一邊.

  (2)等式變形過程中,兩邊同加或同減,同乘或同除以的數或整式必須相同.

  (3)在等式變形中,以下兩個性質也經常用到:

 、俚仁骄哂袑ΨQ性,即:如果 ,那么 .

  ②等式具有傳遞性,即:如果 , ,那么 .黑體小四

  二、方程的相關概念黑體小四

  1.方程,含有未知數的等式叫作方程. 注意:定義中含有兩層含義,即:方程必定是等式,即是用等號連接而成的式子;方程中必定有一個待確定的數即未知的字母.二者缺一不可.楷體五號

  2.方程的次和元 方程中未知數的最高次數稱為方程的次,方程中不同未知數的個數稱為元.楷體五號

  3.方程的已知數和未知數楷體五號

  已知數:一般是具體的數值,如 中( 的系數是1,是已知數.但可以不說).5和0是已知數,如果方程中的已知數需要用字母表示的話,習慣上有等表示.

  未知數:是指要求的數,未知數通常用 、 、 等字母表示.如:關于 、 的方程 中, 、 、 是已知數, 、 是未知數.楷體五號

  4.方程的解 使方程左、右兩邊相等的未知數的值,叫做方程的解.楷體五號

  5.解方程 求得方程的解的過程.

  注意:解方程與方程的解是兩個不同的概念,后者是求得的.結果,前者是求出這個結果的過程.

  6.方程解的檢驗楷體要驗證某個數是不是一個方程的解,只需將這個數分別代入方程的左邊和右邊,如果左、右兩邊數值相等,那么這個數就是方程的解,否則就不是.黑體小四

  三、一元一次方程的定義體小四

  1.一元一次方程的概念 只含有一個未知數,并且未知數的最高次數是1,系數不等于0的方程叫做一元一次方程,這里的“元”是指未知數,“次”是指含未知數的項的最高次數.楷體五號

  2.一元一次方程的形式楷體五號

  標準形式: (其中 , , 是已知數)的形式叫一元一次方程的標準形式.

  最簡形式:方程 ( , , 為已知數)叫一元一次方程的最簡形式.

  注意:(1)任何一元一次方程都可以轉化為最簡形式或標準形式,所以判斷一個方程是不是一元一次方程,可以通過變形為最簡形式或標準形式來驗證.如方程 是一元一次方程.如果不變形,直接判斷就出會現錯誤.

  (2)方程 與方程 是不同的,方程 的解需要分類討論完成.黑體小四

  四、一元一次方程的解法

  1.解一元一次方程的一般步驟五號

  (1)去分母:在方程的兩邊都乘以各分母的最小公倍數. 注意:不要漏乘不含分母的項,分子是個整體,含有多項式時應加上括號.

  (2)去括號:一般地,先去小括號,再去中括號,最后去大括號. 注意:不要漏乘括號里的項,不要弄錯符號.

  (3)移項:把含有未知數的項都移到方程的一邊,不含未知數的項移到方程的另一邊. 注意:①移項要變號;②不要丟項.

  (4)合并同類項:把方程化成 的形式. 注意:字母和其指數不變.

  (5)系數化為1:在方程的兩邊都除以未知數的系數 ,得到方程的解 . 注意:不要把分子、分母搞顛倒.體五號

  2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整體思想、換元法、裂項、拆添項以及運用分式的恒等變形等.

  3.關于x的方程 ax b 解的情況 ⑴當a 0時,x ⑵當a ,b 0時,方程有無數多個解 ⑶當a 0,b 0時,方程無解

  練習1、等式的概念和性質

  1.下列說法不正確的是

  A.等式兩邊都加上一個數或一個等式,所得結果仍是等式.

  B.等式兩邊都乘以一個數,所得結果仍是等式. C.等式兩邊都除以一個數,所得結果仍是等式.

  D.一個等式的左、右兩邊與另一個等式的左、右兩邊分別相加,所得結果仍是等式.

  2.根據等式的性質填空.

  (1) ,則 ; (2) ,則 ;

  (3) ,則 ; (4) ,則 .

  練習2、方程的相關概念

  1.列各式中,哪些是等式?哪些是代數式,哪些是方程?

  ① ;② ;③ ;④ ;⑤ ;⑥ ;

 、 ;⑧ ;⑨ .

  2.判斷題.

  (1)所有的方程一定是等式.

  (2)所有的等式一定是方程.

  (3) 是方程.

  (4) 不是方程.

  (5) 不是等式,因為 與 不是相等關系.

  (6) 是等式,也是方程.

  (7)“某數的3倍與6的差”的含義是 ,它是一個代數式,而不是方程.

  練習3、一元一次方程的定義

  1.在下列方程中哪些是一元一次方程?哪些不是?說明理由:

  (1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.

  2.已知 是關于 的一元一次方程,求 的值.

  3.已知方程 是關于x的一元一次方程,則m=_________

  4.已知方程 是一元一次方程,則 ; .

  練習4、一元一次方程的解與解法

  1)一元一次方程的解 一)、根據方程解的具體數值來確定

  1.若關于x的方程 的解是 ,則代數式 的值是_________。

  2.若 是方程 的一個解,則 .

  3.某同學在解方程 ,把 處的數字看錯了,解得 ,該同學把 看成了 .

  二)、根據方程解的個數情況來確定楷體五號

  1.關于 的方程 ,分別求 , 為何值時,原方程:

  (1)有唯一解;(2)有無數多解;(3)無解.

  2.已知關于 的方程 有無數多個解,那么 , .

  3.已知方程 有兩個不同的解,試求 的值.

  三)、根據方程定解的情況來確定楷體五號

  1.若 , 為定值,關于 的一元一次方程 ,無論 為何值時,它的解總是 ,求 和 的值.

  2.當 取符合 的任意數時,式子 的值都是一個定值,其中 ,求 , 的值.

  五號

  四)、根據方程整數解的情況來確定楷體五號

  1.已知 為整數,關于 的方程 的解為正整數,求 的值.

  2.已知關于 的方程 有整數解,那么滿足條件的所有整數 =

  3.若方程 有一個正整數解,則 取的最小正數是多少?并求出相應方程的解.

  號

  五)、根據方程公共解的情況來確定

  1.若 和 是關于 的同解方程,則 的值是 .

  2.已知關于 的方程 ,和方程 有相同的解,求這個相同的解.

  3.已知關于 的方程 僅有正整數解,并且和關于 的方程 是同解方程.若 , ,求出這個方程可能的解.

  2)一元一次方程的解法 一)、基本類型的一元一次方程的解法

  1.解方程:(1) (2) - =1- (3)

  二)、分式中含有小數的一元一次方程的解法楷體五號

  1.解方程:(1) (2)

  (3) (4)

  三)、含有多層括號的一元一次方程的解法體五號

  1.解方程:(1) (2) (3)

  四)、一元一次方程的技巧解法

  1.解方程:(1) (2)

  (3) (4)

  一、填空題.(每小題3分,共24分)

  1.已知4x2n-5+5=0是關于x的一元一次方程,則n=_______.

  2.若x=-1是方程2x-3a=7的解,則a=_______.

  3.當x=______時,代數式 x-1和 的值互為相反數.

  4.已知x的 與x的3倍的和比x的2倍少6,列出方程為________.

  5.在方程4x+3y=1中,用x的代數式表示y,則y=________.

  6.某商品的進價為300元,按標價的六折銷售時,利潤率為5%,則商品的標價為____元.

  7.已知三個連續(xù)的偶數的和為60,則這三個數是________.

  8.一件工作,甲單獨做需6天完成,乙單獨做需12天完成,若甲、乙一起做,則需________天完成.

  二、選擇題.(每小題3分,共30分)

  9.方程2m+x=1和3x-1=2x+1有相同的解,則m的值為.

  A.0 B.1 C.-2 D.-

  10.方程│3x│=18的解的情況是.

  A.有一個解是6 B.有兩個解,是±6

  C.無解 D.有無數個解

  11.若方程2ax-3=5x+b無解,則a,b應滿足.

  A.a≠ ,b≠3 B.a= ,b=-3

  C.a≠ ,b=-3 D.a= ,b≠-3

  12.解方程 時,把分母化為整數,得。

  A、 B、 C、 D、

  13.在800米跑道上有兩人練中長跑,甲每分鐘跑300米,乙每分鐘跑260米,兩人同地、同時、同向起跑,t分鐘后第一次相遇,t等于.

  A.10分 B.15分 C.20分 D.30分

  14.某商場在統(tǒng)計今年第一季度的銷售額時發(fā)現,二月份比一月份增加了10%,三月份比二月份減少了10%,則三月份的銷售額比一月份的銷售額.

  A.增加10% B.減少10% C.不增也不減 D.減少1%

  15.在梯形面積公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,則b=( )厘米.

  A.1 B.5 C.3 D.4

  16.已知甲組有28人,乙組有20人,則下列調配方法中,能使一組人數為另一組人數的一半的是.

  A.從甲組調12人去乙組 B.從乙組調4人去甲組

  C.從乙組調12人去甲組 D.從甲組調12人去乙組,或從乙組調4人去甲組

  17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負一場是0分,一個隊打了14場比賽,負了5場,共得19分,那么這個隊勝了場.

  A.3 B.4 C.5 D.6

  18.如圖所示,在甲圖中的左盤上將2個物品取下一個,則在乙圖中右盤上取下幾個砝碼才能使天平仍然平衡?

  A.3個 B.4個 C.5個 D.6個

  三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)

  19.解方程:2(x-3)+3(2x-1)=5(x+3)

  20.解方程:

  21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補空白,需要配多大尺寸的圖片.

  22.一個三位數,百位上的數字比十位上的數大1,個位上的數字比十位上數字的3倍少2.若將三個數字順序顛倒后,所得的三位數與原三位數的和是1171,求這個三位數.

  23.據了解,火車票價按“ ”的方法來確定.已知A站至H站總里程數為1500千米,全程參考價為180元.下表是沿途各站至H站的里程數:

  車站名 A B C D E F G H

  各站至H站

  里程數(米) 1500 1130 910 622 402 219 72 0

  例如:要確定從B站至E站火車票價,其票價為 =87.36≈87(元).

  (1)求A站至F站的火車票價(結果精確到1元).

  (2)旅客王大媽乘火車去女兒家,上車過兩站后拿著車票問乘務員:“我快到站了嗎?”乘務員看到王大媽手中的票價是66元,馬上說下一站就到了.請問王大媽是在哪一站下的車(要求寫出解答過程).

  24.某公園的門票價格規(guī)定如下表:

  購票人數 1~50人 51~100人 100人以上

  票 價 5元 4.5元 4元

  某校初一甲、乙兩班共103人(其中甲班人數多于乙班人數)去游該公園,如果兩班都以班為單位分別購票,則一共需付486元.

  (1)如果兩班聯合起來,作為一個團體購票,則可以節(jié)約多少錢?

  (2)兩班各有多少名學生?(提示:本題應分情況討論)

初一數學上冊的教案9

  教學目標

  1、知道有理數混合運算的運算順序,能正確進行有理數的混合運算;

  2、會用計算器進行較繁雜的有理數混合運算。

  教學重點

  1、有理數的混合運算;

  2、運用運算律進行有理數的混合運算的簡便計算。

  教學難點

  運用運算律進行有理數的.混合運算的簡便計算。

  有理數的混合運算的運算順序

  也就是說,在進行含有加、減、乘、除的混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的運算,所以像這樣的有理數的混合運算,有以下運算順序:

  先乘方,再乘除,最后加減。如果有括號,先進行括號內的運算。

  你會根據有理數的運算順序計算上面的算式嗎?

  2、8有理數的混合運算:同步練習

  1、有依次排列的3個數:2,9,7,對任意相鄰的兩個數,都用右邊的數減去左邊的數,所得之差寫在這兩個數之間,可產生一個新數串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產生一個新數串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數串2,9,7開始操作第一百次以后所產生的那個新數串的所有數之和是。

  《2、8有理數的混合運算》課后訓練

  1、興旺肉聯廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內溫度上升4 ℃,現有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關上庫門4小時后,肉的溫度是多少攝氏度?

初一數學上冊的教案10

  教學目標:

  1、明白生活中存在著無數表示相反意義的量,能舉例說明;

  2、能體會引進負數的必要性和意義,建立正數和負數的數感。

  重點:通過列舉現實世界中的“相反意義的量”的例子來引進正數和負數,要求學生理解正數和負數的意義,為以后通過實例引進有理數的`大小比較、加法和乘法法則打基礎。

  難點:對負數的意義的理解。

  教學過程:

  一、知識導向:本節(jié)課是一個從小學過渡的知識點,主要是要抓緊在數范圍上擴充,對引進“負數”這一概念的必要性及意義的理解。

  二、新課拆析:1、回顧小學中有關數的范圍及數的分類,指出小學中的“數”是為了滿足生產和生活的需要而產生發(fā)展起來的。如:0,1,2,3,…,,

  2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發(fā)現事物之間存在的對立面。

  如:汽車向東行駛3千米和向西行駛2千米

  溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現:如果只用原來所學過的數很難區(qū)分具有相反意義的量。

  一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學過的數表示;把與它意義相反的量規(guī)定為負的,用過去學過的數(零除外)前面放上一個“—”號來表示。

  如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數,叫做負數,如:-3,-45,…過去學過的那些數(零除外)叫做正數,如:1,2.2…零既不是正數,也不是負數例:下面各數中,哪些數是正數,哪些數是負數,1,2.3,-5.5,68,-,0,-11,+123,…

  三、階梯訓練:P18練習:1,2,3,4。

  四、知識小結:

  從本節(jié)課所學的內容中,應能從數的角度來區(qū)分小學與初中的異同點,通過運用發(fā)現相反意義量,能理解引進“負數”的必要性及其意義。

  五、作業(yè)鞏固:

  1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數來表示; 2、分別舉出幾個正數與負數(最少6個)。 3、P20習題2.1:1題。

初一數學上冊的教案11

  教學目的

  1.使學生對整章的學習內容做一回顧,系統(tǒng)地把握全章的知識要點和基本技能。

  2.通過例題和練習,使學生能較好地運用本章知識和技能解決有關問題。

  重點、難點

  判斷圖形是否是軸對稱圖形,線段的垂直平分線、角平分線的性質、等腰三角形的性質和判定及其應用是教學重點,而靈活運用上述性質解決問題、軸對稱圖案的設計是教學難點。

  教學過程

  一、知識回顧

  問題1:軸對稱圖形的定義是什么?

  它是判斷圖形是否是軸對稱圖形的依據。

  問題2:是否會畫軸對稱圖形的對稱軸?

  找出軸對稱圖形的任一組對稱點,連結對稱點,畫對稱點所連線段的垂直平分線,即得到該圖形對稱軸。

  問題3:軸對稱圖形對稱點的.連線與對稱軸有什么關系?

  軸對稱圖形對稱點的連線被對稱軸垂直平分。

  問題4:線段垂直平分線、角平分線具有什么性質?

  線段垂直平分線上的點到線段兩端的距離相等;角平分線上的點到角兩邊的距離相等。

  問題5:等腰三角形有什么性質?

  等腰三角形底邊的中線、高線、頂角的平分線互相重合,等腰三角形的兩個底角相等(等邊對等角),等邊三角形的三個角都等于60。

  問題6:如何判斷三角形是等腰三角形?等邊三角形?

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊);有兩個角是60的三角形是等邊三角形,有一個角是60的等腰三角形是等邊三角形。

  二、例題

  1.下列圖案是軸對稱圖形的有( )

  個 個 個 個

  2.如右圖所示,已知,OC平分AOB,D是OC上一點,DEOA,DFOB,垂足為E、F點,那么

  (1)DEF與DFE相等嗎?為什么?

  (2)OE與OF相等嗎?為什么?

  三、鞏固練習

  如右圖所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E兩點,若AB=12cm,BC=l0cm,A=.求△BCD的周長和DBC度數。

  四、課堂小結

  通過本節(jié)課復習,同學們應掌握本章知識和技能,并運用所學知識和技能解決問題,

  五、作業(yè)

初一數學上冊的教案12

  教學目標

  1、會進行簡單的整式加、減運算、

  2、能說明整式加、減中每一步運算的算理,逐步發(fā)展有條理的思考和表述的能力、

  重、難點

  會進行簡單的整式加、減運算、

  教學過程

  一、情境創(chuàng)設

  1、操作:

  (1)準備三張如下圖所示的卡片

  (2)思考:

  用它們拼成各種形狀不同的四邊形,并計算拼成的四邊形的周長、

  二、探索活動

  活動一:

  1、整式的加減運算要進行哪些步驟?

  進行整式的加減運算時,____________________________________________

  《3、6整式的加減》同步測試

  1、三個小隊植樹,第一隊種x棵,第二隊種的樹比第一隊種的樹的2倍還多8棵,第三隊種的樹比第二隊種的樹的一半少6棵,三隊共種樹________棵、

  2、甲倉庫有煤1500噸,乙倉庫有煤800噸,從甲倉庫每天運出煤5噸,從乙倉庫每天運出煤2噸,求m天后,甲、乙兩倉庫一共還有多少噸煤,并求出當m=30時,甲、乙兩倉庫一共存煤的數量?

  3、6整式的加減:測試

  1、已知三角形的第一邊長為2a+b,第二邊比第一邊長a-b,第三邊比第二邊短a,求這個三角形的'周長?

  2、某同學做了一道數學題:“已知兩個多項式為A,B,B=3x﹣2y,求A﹣B的值、”他誤將“A﹣B”看成了“A+B”,結果求出的答案是x﹣y,那么原來的A﹣B的值應該是( )

  A、4x﹣3y B、﹣5x+3y C、﹣2x+y D、2x﹣y

初一數學上冊的教案13

  【學習目標】

  1.掌握有理數的混合運算法則,并能熟練地進行有理數的加、減、乘、除、乘方的混合運算;

  2.通過計算過程的反思,獲得解決問題的.經驗,體會在解決問題的過程中與他人合作的重要性;

  【學習方法】

  自主探究與合作交流相結合。

  【學習重難點】

  重點:能熟練地按照有理數的運算順序進行混合運算

  難點:在正確運算的基礎上,適當地應用運算律簡化運算

  【學習過程】

  模塊一預習反饋

  一、學習準備

  1.四則(加減乘除)混合運算的順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。

  2.有理數的運算定律:__________________________________________________.

  3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業(yè)。

  《2.11有理數的混合運算》課后作業(yè)

  9.用符號“>”“<”“=”填空.

  42+32________2×4×3;

  (-3)2+12________2×ok3w_ads("s002");

  《2.11有理數的混合運算》同步練習

  5、小亮的爸爸在一家合資企業(yè)工作,月工資2500元,按規(guī)定:其中800元是免稅的,其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20xx元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?

初一數學上冊的教案14

  課題:

  應用題的對比

  教學目標

  1.掌握一個數比另一個數多幾和求比一個數多幾的應用題的數量關系.

  2.正確解答應用題.

  教學重點

  掌握兩類應用題的數量關系.

  教學難點

  掌握兩類應用題的數量關系.

  教具學具準備

  投影儀、投影片、學具等.

  教學步驟

  (一)鋪墊孕伏

  1.游戲活動,創(chuàng)設情境.

  (1)啟發(fā)學生根據兩組人數不同的條件,提出問題,并口頭解答,使學生明確,可以提出:

  甲組有8人,乙組有6人,甲組比乙組多幾人?

  甲組有8人,乙組比甲組少2人,乙組有幾人?

  乙組有6人,甲組比乙組多2人,甲組有幾人?

  甲組有8人,乙組有6人,乙組比甲組少幾人?

  (2)通過游戲,互相議一議,你知道了什么?

  數量關系一樣,只是問法不一樣.

  ②甲組有8人,乙組比甲組少2人,乙組有幾人?

  知道甲組人多,乙組人少,求少的

  ③乙組有6人,甲組比乙組多2人,甲組有幾人?

  知道甲組人多,乙組人少,求多的

  注意:學生提出的問題不要限制,但教師重點訓練①、②兩種類型.

  2.操作學具,鞏固所學的數量關系.

  (1)用學具擺一擺:一個數比另一個數多幾的.數量關系.

  (2)同桌互相交流,知道了什么?

  教師巡視.并個別指導,學生操作和口述.

  (二)探究新知

  1.演示課件“比一個數少幾的應用題(例12)”,出示例12.

  2.小組活動.

  (1)教師繼續(xù)演示課件“比一個數少幾的應用題(例12)”,學生討論兩道題的已知條件和所求問題.

  (2)通過討論和看示意圖,知道了什么?

  使學生明確:兩道題都是紅花多,黃花少.

  (3)想一想:這兩道題有什么相同點,有什么不同點?

  使學生明確:第一個已知條件相同;不同的是第一題的第二個條件是第二題要求的問題,第一題要求的問題是第二題已知的第二個條件.兩題都用減法計算.

  3.獨立解答.

  (1)填空(課本).

  (2)訂正時,說一說是怎樣想的?

  4.反饋練習:完成“做一做”.

  獨立填在課本上,訂正時啟發(fā)學生互相說一說是怎樣想的?

  (三)全課小結

  師生共同總結這節(jié)課學習什么,注意什么.

  隨堂練習

  1.練習二十四第8題.

  分組練習,組長帶領同學訂正.

  2.練習二十四第3題改編為接力計算.

初一數學上冊的教案15

  教材分析

  方程是應用廣泛的數學工具,是代數學的核心內容,在義務教育階段的數學課程中占有重要地位。本節(jié)課選自人教版數學七年級上冊第三章第一節(jié)的內容,是一節(jié)引入課,對于激發(fā)學生學習方程的興趣,獲得解決實際問題的基本方法具有十分重要的作用。本節(jié)課是結合學生已有學習經驗,從算式到方程,繼而對一元一次方程及方程的解進行了探究,讓學生體驗未知數參與運算的好處,用方程分析問題、解決問題(即培養(yǎng)學生建模的思想),體會學習方程的意義和作用。本節(jié)課是在承接小學學習的簡易方程和剛剛學習的整式的加減的基礎上進行學習的,同時又是后續(xù)學習二元一次方程、一元二次方程的重要基礎。因此,這節(jié)課在教材中起到了承上啟下的作用。

  學情分析

  學生前面已經學習了簡單的方程及整式的內容,為本節(jié)課的學習做好了鋪墊。

  七年級的學生思維活躍,求知欲強,有比較強烈的自我意識,對觀察、猜想、探索性的問題充滿好奇,因而在教學素材的選取與呈現方式以及學習活動的安排上力求設置學生感興趣的并且具有挑戰(zhàn)性的內容,讓學生感受到數學來源于生活又回歸生活實際,無形中產生濃厚的學習興趣和探索熱情。

  七年級學生對于方程已經具備了一定的知識基礎,但是對方程的理解還比較膚淺、模糊,還處于感性層面,缺乏理性的認識和把握,而且學生正處于感性認識向理性認識過渡的時期,抽象思維能力有待提高,對于一元一次方程的概念教學要選取具體的問題情境,逐步抽象。

  七年級的學生很想利用所學的知識解決問題,通過對幾個問題的分析、探討、相互交流,逐步培養(yǎng)學生的觀察、探索、歸納等能力,提高對課本知識的運用能力,從而認識歸納一元一次方程的相關概念,在練習中鞏固和熟悉一元一次方程。

  教學目標

  1.知識與技能目標

  (1)掌握方程、一元一次方程的定義,知道什么是方程的解。

  (2)體會字母表示數的好處,會根據實際問題的條件列方程,能檢驗出一個數值是否是方程的解。

  2.過程與方法目標

 。1)通過將實際問題抽象成數學問題,分析實際問題中的.數量關系,利用其中的相等關系列出方程,滲透數學建模的思想,認識到從算式到方程是數學的一種進步。

 。2)通過具體情境貼近學生生活,在生活中挖掘數學問題,解決數學問題,使數學生活化,生活數學化,會利用一元一次方程的知識解決一些實際問題。

  3.情感態(tài)度與價值觀目標

 。1)通過具體情境的探索、交流等數學活動培養(yǎng)學生的團體合作精神和積極參與、勤于思考的意識。

 。2)激發(fā)學生的求知欲和學習數學的熱情,培養(yǎng)獨立思考和合作交流的能力,讓他們享受成功的喜悅。

 。3)經歷從生活中發(fā)現數學和應用數學解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,增強用數學的意識,體會數學的應用價值。

  教學重點、難點

  教學重點:1.方程、一元一次方程、方程的解的概念。

  2.根據實際問題的條件列出方程。

  教學難點:分析實際問題中的數量關系,利用其中的相等關系列出方程。

  教學過程

  一、創(chuàng)設情境 導入新課

  二、探究新知 形成概念

  三、應用新知 鞏固提高

  四、感悟反思

  五、名題欣賞

  六、布置作業(yè)

  板書設計

【初一數學上冊的教案】相關文章:

初一的數學上冊教案11-09

初一上冊的數學教案11-13

初一數學上冊教案12-18

初一數學上冊的教案12-23

初一數學上冊教案12-13

初一的數學上冊教案精選15篇11-11

初一的數學上冊教案15篇11-10

初一的數學上冊教案(15篇)11-11

初一上冊數學教案01-04

初一數學上冊教案精選15篇02-04