高三數(shù)學(xué)教案(通用14篇)
作為一位兢兢業(yè)業(yè)的人民教師,就有可能用到教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么問題來了,教案應(yīng)該怎么寫?下面是小編幫大家整理的高三數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
高三數(shù)學(xué)教案 1
一、指導(dǎo)思想與理論依據(jù)
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
三、學(xué)情分析
本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
四、教學(xué)目標(biāo)
(1)基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(2)能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡單的三角函數(shù)求值與化簡;
。3)創(chuàng)新素質(zhì)目標(biāo):通過對公式的.推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;
(4)個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
五、教學(xué)重點(diǎn)和難點(diǎn)
1、教學(xué)重點(diǎn)
理解并掌握誘導(dǎo)公式。
2、教學(xué)難點(diǎn)
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
六、教法學(xué)法以及預(yù)期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析。
1、教法
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì)。
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
2、學(xué)法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情。如何能讓學(xué)生程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題。
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
3、預(yù)期效果
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
高三數(shù)學(xué)教案 2
一、教學(xué)目標(biāo)
1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。
2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式。
二、能力目標(biāo)
1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象思維能力。
2、通過由已知信息寫一次函數(shù)表達(dá)式的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。
三、情感目標(biāo)
1、通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。
2、經(jīng)歷利用一次函數(shù)解決實(shí)際問題的.過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。
四、教學(xué)重難點(diǎn)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
五、教學(xué)過程
1、新課導(dǎo)入有關(guān)函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的增加,彈簧的長度相應(yīng)的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。
(1)計(jì)算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時(shí)彈簧的長度,(2)你能寫出x與y之間的關(guān)系式嗎?
分析:當(dāng)不掛物體時(shí),彈簧長度為3厘米,當(dāng)掛1千克物體時(shí),增加0.5厘米,總長度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時(shí),彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關(guān)系嗎?(y=1000.18x或y=100 x)接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。
3、一次函數(shù),正比例函數(shù)的概念若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
4、例題講解例1:下列函數(shù)中,y是x的一次函數(shù)的是( ) 、賧=x6;②y= ;③y= ;④y=7x A、①②③ B、①③④ C、①②③④ D、②③④分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B
高三數(shù)學(xué)教案 3
一、教材與學(xué)情分析
《隨機(jī)抽樣》是人教版職教新教材《數(shù)學(xué)(必修)》下冊第六章第一節(jié)的內(nèi)容,“簡單隨機(jī)抽樣”是“隨機(jī)抽樣”的基礎(chǔ),“隨機(jī)抽樣”又是“統(tǒng)計(jì)學(xué)‘的基礎(chǔ),因此,在“統(tǒng)計(jì)學(xué)”中,“簡單隨機(jī)抽樣”是基礎(chǔ)的基礎(chǔ)針對這樣的情況,我做了如下的教學(xué)設(shè)想。
二、教學(xué)設(shè)想
(一)教學(xué)目標(biāo):
(1)理解抽樣的必要性,簡單隨機(jī)抽樣的概念,掌握簡單隨機(jī)抽樣的兩種方法;
(2)通過實(shí)例分析、解決,體驗(yàn)簡單隨機(jī)抽樣的科學(xué)性及其方法的可靠性,培養(yǎng)分析問題,解決問題的能力;
(3)通過身邊事例研究,體會抽樣調(diào)查在生活中的應(yīng)用,培養(yǎng)抽樣思考問題意識,養(yǎng)成良好的個性品質(zhì)。
(二)教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):掌握簡單隨機(jī)抽樣常見的兩種方法(抽簽法、隨機(jī)數(shù)表法)
難點(diǎn):理解簡單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性
為了突出重點(diǎn),突破難點(diǎn),達(dá)到預(yù)期的教學(xué)目標(biāo),我再從教法、學(xué)法上談?wù)勎业慕虒W(xué)思路及設(shè)想。
下面我再具體談?wù)劷虒W(xué)實(shí)施過程,分四步完成。
三、教學(xué)過程
(一)設(shè)置情境,提出問題
〈屏幕出示〉例1:請問下列調(diào)查宜“普查”還是“抽樣”調(diào)查?
A、一鍋水餃的味道
B、旅客上飛機(jī)前的安全檢查
C、一批炮彈的殺傷半徑
D、一批彩電的質(zhì)量情況
E、美國總統(tǒng)的民意支持率
學(xué)生討論后,教師指出生活中處處有“抽樣”,并板書課題——XXXX抽樣
「設(shè)計(jì)意圖」
生活中處處有“抽樣”調(diào)查,明確學(xué)習(xí)“抽樣”的必要性。
(二)主動探究,構(gòu)建新知
〈屏幕出示〉例2:語文老師為了了解電(1)班同學(xué)對某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?
A、在班級12名班委名單中逐個抽查5位同學(xué)進(jìn)行背誦
B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦
先讓學(xué)生分析、選擇B后,師生一起歸納其特征:
(1)不放回逐一抽樣,(2)抽樣有代表性(個體被抽到可能性相等),學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡單隨機(jī)抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補(bǔ)充板書課題——(簡單隨機(jī))抽樣及其定義。
從例1、例2中的正反兩方面,讓學(xué)生體驗(yàn)隨機(jī)抽樣的科學(xué)性。這是突破教學(xué)難點(diǎn)的'重要環(huán)節(jié)之一。
復(fù)習(xí)基本概念,如“總體”、“個體”、“樣本”、“樣本容量”等。
〈屏幕出示〉例4我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會,要使每名學(xué)生的機(jī)會均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>
先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納“抽簽法”步驟:
(1)編號制簽
(2)攪拌均勻
(3)逐個不放回抽取n次。教師板書上面步驟。
請一位同學(xué)說說例3采用“抽簽法”的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、反饋練習(xí)落實(shí)知識點(diǎn)突出重點(diǎn)。
2、體會“抽簽法”具有“簡單、易行”的優(yōu)點(diǎn)。
〈屏幕出示〉例5、第07374期特等獎號碼為08+25+09+21+32+27+13,本期銷售金額19872409元,中獎金額500萬。
提問:特等獎號碼如何確定呢?彩票中獎號碼適合用抽簽法確定嗎?
讓學(xué)生觀看觀看電視搖獎過程,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:
(1)編號
(2)在隨機(jī)數(shù)表上確定起始位置
(3)取數(shù)。教師板書上面步驟。
請一位同學(xué)說說例3采用“隨機(jī)數(shù)表法”的實(shí)施步驟。
高三數(shù)學(xué)教案 4
根據(jù)學(xué)科特點(diǎn),結(jié)合我校數(shù)學(xué)教學(xué)的實(shí)際情況制定以下教學(xué)計(jì)劃,第二學(xué)期高三數(shù)學(xué)教學(xué)計(jì)劃。
一、教學(xué)內(nèi)容 高中數(shù)學(xué)所有內(nèi)容:
抓基礎(chǔ)知識和基本技能,抓數(shù)學(xué)的通性通法,即教材與課程目標(biāo)中要求我們把握的數(shù)學(xué)對象的基本性質(zhì),處理數(shù)學(xué)問題基本的、常用的數(shù)學(xué)思想方法,如歸納、演繹、分析、綜合、分類討論、數(shù)形結(jié)合等。提高學(xué)生的思維品質(zhì),以不變應(yīng)萬變,使數(shù)學(xué)學(xué)科的復(fù)習(xí)更加高效優(yōu)質(zhì)。研究《考試說明》,全面掌握教材知識,按照考試說明的要求進(jìn)行全面復(fù)習(xí)。把握課本是關(guān)鍵,夯實(shí)基礎(chǔ)是我們重要工作,提高學(xué)生的解題能力是我們目標(biāo)。研究《課程標(biāo)準(zhǔn)》和《教材》,既要關(guān)心《課程標(biāo)準(zhǔn)》中調(diào)整的內(nèi)容及變化的要求,又要重視今年數(shù)學(xué)不同版本《考試說明》的比較。結(jié)合上一年的新課改區(qū)高考數(shù)學(xué)評價(jià)報(bào)告,對《課程標(biāo)準(zhǔn)》進(jìn)行橫向和縱向的分析,探求命題的變化規(guī)律。
二、學(xué)情分析:
我今年教授兩個班的數(shù)學(xué):(17)班和(18)班,經(jīng)過與同組的其他老師商討后,打算第一輪20xx年2月底;第二輪從20xx年2月底至5月上旬結(jié)束;第三輪從20xx年5月上旬至5月底結(jié)束。
。ㄒ唬┩瑐湔n組老師之間加強(qiáng)研究
1、研究《課程標(biāo)準(zhǔn)》、參照周邊省份20xx年《考試說明》,明確復(fù)習(xí)教學(xué)要求。
2、研究高中數(shù)學(xué)教材。
處理好幾種關(guān)系:課標(biāo)、考綱與教材的關(guān)系;教材與教輔資料的關(guān)系;重視基礎(chǔ)知識與培養(yǎng)能力的關(guān)系。
3、研究08年新課程地區(qū)高考試題,把握考試趨勢。
特別是山東、廣東、江蘇、海南、寧夏等課改地區(qū)的試卷。
4、研究高考信息,關(guān)注考試動向。
及時(shí)了解09高考動態(tài),適時(shí)調(diào)整復(fù)習(xí)方案。
5、研究本校數(shù)學(xué)教學(xué)情況、尤其是本屆高三學(xué)生的學(xué)情。
有的放矢地制訂切實(shí)可行的校本復(fù)習(xí)教學(xué)計(jì)劃。
。ㄒ唬┲匾曊n本,夯實(shí)基礎(chǔ),建立良好知識結(jié)構(gòu)和認(rèn)知結(jié)構(gòu)體系 課本是考試內(nèi)容的載體,是高考命題的依據(jù),也是學(xué)生智能的生長點(diǎn),是最有參考價(jià)值的資料。
。ǘ┨嵘芰,適度創(chuàng)新 考查能力是高考的重點(diǎn)和永恒主題。
教育部已明確指出高考從“以知識立意命題”轉(zhuǎn)向“以能力立意命題”。
。ㄈ⿵(qiáng)化數(shù)學(xué)思想方法 數(shù)學(xué)不僅僅是一種重要的工具,更重要的是一種思維模式,一種思想。
注重對數(shù)學(xué)思想方法的考查也是高考數(shù)學(xué)命題的顯著特點(diǎn)之一。
數(shù)學(xué)思想方法是對數(shù)學(xué)知識最高層次上的概括提煉,它蘊(yùn)涵于數(shù)學(xué)知識的發(fā)生、發(fā)展和應(yīng)用過程中,能夠遷移且廣泛應(yīng)用于相關(guān)科學(xué)和社會生活。
在復(fù)習(xí)備考中,要把數(shù)學(xué)思想方法滲透到每一章、每一節(jié)、每一課、每一套試題中去,任何一道精心編擬的數(shù)學(xué)試題,均蘊(yùn)涵了極其豐富的數(shù)學(xué)思想方法,如果注意滲透,適時(shí)講解、反復(fù)強(qiáng)調(diào),學(xué)生會深入于心,形成良好的思維品格,考試時(shí)才會思如泉涌、駕輕就熟,數(shù)學(xué)思想方法貫穿于整個高中數(shù)學(xué)的始終,因此在進(jìn)入高三復(fù)習(xí)時(shí)就需不斷利用這些思想方法去處理實(shí)際問題,而并非只在高三復(fù)習(xí)將結(jié)束時(shí)去講一兩個專題了事。
。ㄋ模⿵(qiáng)化思維過程,提高解題質(zhì)量 數(shù)學(xué)基礎(chǔ)知識的學(xué)習(xí)要充分重視知識的形成過程,解數(shù)學(xué)題要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,注意多題一解、一題多解和一題多變。
多題一解有利于培養(yǎng)學(xué)生的求同思維;一題多解有利于培養(yǎng)學(xué)生的求異思維;一題多變有利于培養(yǎng)學(xué)生思維的靈活性與深刻性。
在分析解決問題的'過程中既構(gòu)建知識的橫向聯(lián)系,又養(yǎng)成學(xué)生多角度思考問題的習(xí)慣。
(五)認(rèn)真總結(jié)每一次測試的得失,提高試卷的講評效果 試卷講評要有科學(xué)性、針對性、輻射性。
講評不是簡單的公布正確答案,一是幫學(xué)生分析探求解題思路,二是分析錯誤原因,吸取教訓(xùn),三是適當(dāng)變通、聯(lián)想、拓展、延伸,以例及類,探求規(guī)律。還可橫向比較,與其他班級比較,尋找個人教學(xué)的薄弱環(huán)節(jié)。根據(jù)所教學(xué)生實(shí)際有針對性地組題進(jìn)行強(qiáng)化訓(xùn)練,抓基礎(chǔ)題,得到基礎(chǔ)分對大部分學(xué)校而言就是高考成功,這已是不爭的共識。第二輪專題過關(guān),對于高考數(shù)學(xué)的復(fù)習(xí),應(yīng)在一輪系統(tǒng)學(xué)習(xí)的基礎(chǔ)上,利用專題復(fù)習(xí),更能提高數(shù)學(xué)備考的針對性和有效性。在這一階段,鍛煉學(xué)生的綜合能力與應(yīng)試技巧,不要重視知識結(jié)構(gòu)的先后次序,需配合著專題的學(xué)習(xí),提高學(xué)生采用“配方法、待定系數(shù)法、數(shù)形結(jié)合,分類討論,換元”等方法解決數(shù)學(xué)問題的能力,同時(shí)針對選擇、填空的特色,學(xué)習(xí)一些解題的特殊技巧、方法,以提高在高考考試中的對時(shí)間的掌控力。第三輪綜合模擬,在前兩輪復(fù)習(xí)的基礎(chǔ)上,為了增強(qiáng)數(shù)學(xué)備考的針對性和應(yīng)試功能,做一定量的高考模擬試題是必須的,也是十分有效的。
四、該階段需要解決的問題是:
1、強(qiáng)化知識的綜合性和交匯性,鞏固方法的選擇性和靈活性。
2、檢查復(fù)習(xí)的知識疏漏點(diǎn)和解題易錯點(diǎn),探索解題的規(guī)律。
3、檢驗(yàn)知識網(wǎng)絡(luò)的生成過程。
4、領(lǐng)會數(shù)學(xué)思想方法在解答一些高考真題和新穎的模擬試題時(shí)的工具性。
五、在有序做好復(fù)習(xí)工作的同時(shí)注意一下幾點(diǎn):
。1)從班級實(shí)際出發(fā),我要幫助學(xué)生切實(shí)做到對基礎(chǔ)訓(xùn)練限時(shí)完成,加強(qiáng)運(yùn)算能力的訓(xùn)練,嚴(yán)格答題的規(guī)范化,如小括號、中括號等,特別是對那些書寫“像霧像雨又像風(fēng)”的學(xué)生要加強(qiáng)指導(dǎo),確;镜梅。
。2)在考試的方法和策略上做好指導(dǎo)工作,如心理問題的疏導(dǎo),考試時(shí)間的合理安排等等。
。3)與備課組其他老師保持統(tǒng)一,對內(nèi)協(xié)作,對外競爭。自己多做研究工作,如仔細(xì)研讀訂閱的雜志,研究典型試題,把握高考走勢。
(4)做到“有練必改,有改必評,有評必糾”。
。5)課內(nèi)面向大多數(shù)同學(xué),課外抓好優(yōu)等生和邊緣生,尤其是邊緣生。
班級是一個集體,我們的目標(biāo)是“水漲船高”,而不是“水落石出”。
(6)要改變教學(xué)方式,努力學(xué)習(xí)和實(shí)踐我?偨Y(jié)推出的“221”模式。
教學(xué)是一門藝術(shù),藝術(shù)是無止境的,要一點(diǎn)天份,更要勤奮。
。7)教研組團(tuán)隊(duì)合作 虛心學(xué)習(xí)別人的優(yōu)點(diǎn),博采眾長,對工作是很有利的。
(8)平等對待學(xué)生,關(guān)心每一位學(xué)生的成長,宗旨是教出來的學(xué)生不一定都很優(yōu)秀,但肯定每一位都有進(jìn)步;讓更多的學(xué)生喜歡數(shù)學(xué)。
高三數(shù)學(xué)教案 5
內(nèi)容提要:本文把常見的排列問題歸納成三種典型問題,并在排列的一般規(guī)定性下,對每一種類型的問題通過典型例題歸納出相應(yīng)的解決方案,并附以近年的高考原題及解析,使我們對排列問題的認(rèn)識更深入本質(zhì),對排列問題的解決更有章法可尋。
關(guān)鍵詞: 特殊優(yōu)先,大元素,捆綁法,插空法,等機(jī)率法
排列問題的應(yīng)用題是學(xué)生學(xué)習(xí)的難點(diǎn),也是高考的必考內(nèi)容,筆者在教學(xué)中嘗試將排列
問題歸納為三種類型來解決:
下面就每一種題型結(jié)合例題總結(jié)其特點(diǎn)和解法,并附以近年的高考原題供讀者參研。
一、能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)
解決此類問題的關(guān)鍵是特殊元素或特殊位置優(yōu)先。或使用間接法。
例1:(1)7位同學(xué)站成一排,其中甲站在中間的位置,共有多少種不同的排法?
。2)7位同學(xué)站成一排,甲、乙只能站在兩端的排法共有多少種?
。3)7位同學(xué)站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?
。4)7位同學(xué)站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?
解析:
(1)先考慮甲站在中間有1種方法,再在余下的6個位置排另外6位同學(xué),共 種方法;
。2)先考慮甲、乙站在兩端的排法有 種,再在余下的5個位置排另外5位同學(xué)的排法有 種,共 種方法;
。3) 先考慮在除兩端外的5個位置選2個安排甲、乙有 種,再在余下的5個位置排另外5位同學(xué)排法有 種,共 種方法;本題也可考慮特殊位置優(yōu)先,即兩端的排法有 ,中間5個位置有 種,共 種方法;
。4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有 種,乙不站在排頭的排法總數(shù)為:先在除甲、乙外的5人中選1人安排在排頭的方法有 種,中間5個位置選1個安排乙的方法有 ,再在余下的5個位置排另外5位同學(xué)的排法有 ,故共有 種方法;本題也可考慮間接法,總排法為 ,不符合條件的甲在排頭和乙站排尾的排法均為 ,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有 種。
例2。某天課表共六節(jié)課,要排政治、語文、數(shù)學(xué)、物理、化學(xué)、體育共六門課程,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學(xué),共有多少種不同的排課方法?
解法1:對特殊元素?cái)?shù)學(xué)和體育進(jìn)行分類解決
(1)數(shù)學(xué)、體育均不排在第一節(jié)和第六節(jié),有 種,其他有 種,共有 種;
。2)數(shù)學(xué)排在第一節(jié)、體育排在第六節(jié)有一種,其他有 種,共有 種;
。3)數(shù)學(xué)排在第一節(jié)、體育不在第六節(jié)有 種,其他有 種,共有 種;
。4)數(shù)學(xué)不排在第一節(jié)、體育排在第六節(jié)有 種,其他有 種,共有 種;
所以符合條件的排法共有 種
解法2:對特殊位置第一節(jié)和第六節(jié)進(jìn)行分類解決
。1)第一節(jié)和第六節(jié)均不排數(shù)學(xué)、體育有 種,其他有 種,共有 種;
(2)第一節(jié)排數(shù)學(xué)、第六節(jié)排體育有一種,其他有 種,共有 種;
。3)第一節(jié)排數(shù)學(xué)、第六節(jié)不排體育有 種,其他有 種,共有 種;
。4)第一節(jié)不排數(shù)學(xué)、第六節(jié)排體育有 種,其他有 種,共有 種;
所以符合條件的排法共有 種。
解法3:本題也可采用間接排除法解決
不考慮任何限制條件共有 種排法,不符合題目要求的排法有:(1)數(shù)學(xué)排在第六節(jié)有 種;(2)體育排在第一節(jié)有 種;考慮到這兩種情況均包含了數(shù)學(xué)排在第六節(jié)和體育排在第一節(jié)的情況 種所以符合條件的排法共有 種
附:
1、(20xx北京卷)五個工程隊(duì)承建某項(xiàng)工程的五個不同的子項(xiàng)目,每個工程隊(duì)承建1項(xiàng),其中甲工程隊(duì)不能承建1號子項(xiàng)目,則不同的承建方案共有( )
。ˋ) 種 (B) 種 (C) 種 (D) 種
解析:本題在解答時(shí)將五個不同的子項(xiàng)目理解為5個位置,五個工程隊(duì)相當(dāng)于5個不同的元素,這時(shí)問題可歸結(jié)為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊(duì)有 ,其它4個元素在4個位置上的排法為 種,總方案為 種。故選(B)。
2、(20xx全國卷Ⅱ)在由數(shù)字0,1,2,3,4,5所組成的沒有重復(fù)數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有 個。
解析:本題在解答時(shí)只須考慮個位和千位這兩個特殊位置的限制,個位為1、2、3、4中的某一個有4種方法,千位在余下的4個非0數(shù)中選擇也有4種方法,十位和百位方法數(shù)為 種,故方法總數(shù)為 種。
3、(20xx福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有 ( )
A、300種 B、240種 C、144種 D、96種
解析:本題在解答時(shí)只須考慮巴黎這個特殊位置的要求有4種方法,其他3個城市的排法看作標(biāo)有這3個城市的3個簽在5個位置(5個人)中的排列有 種,故方法總數(shù)為 種。故選(B)。
上述問題歸結(jié)為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質(zhì),使問題清晰明了,解決起來順暢自然。
二、相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)
相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個元素,再與其他元素進(jìn)行排列,解答時(shí)注意釋放大元素,也叫捆綁法。不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法。
例3:7位同學(xué)站成一排,(1)甲、乙和丙三同學(xué)必須相鄰的排法共有多少種?
。2)甲、乙和丙三名同學(xué)都不能相鄰的排法共有多少種?
。3)甲、乙兩同學(xué)間恰好間隔2人的排法共有多少種?
解析:
。1)第一步、將甲、乙和丙三人捆綁成一個大元素與另外4人的排列為 種,第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內(nèi)的排法有 種,所以共 種;
(2)第一步、先排除甲、乙和丙之外4人共 種方法,第二步、甲、乙和丙三人排在4人排好后產(chǎn)生的5個空擋中的任何3個都符合要求,排法有 種,所以共有 種;(3)先排甲、乙,有 種排法,甲、乙兩人中間插入的2人是從其余5人中選,有 種排法,將已經(jīng)排好的4人當(dāng)作一個大元素作為新人參加下一輪4人組的排列,有 種排法,所以總的排法共有 種。
附:1、(20xx遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復(fù)數(shù)字的八位數(shù),要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數(shù)共有 個。(用數(shù)字作答)
解析:第一步、將1和2捆綁成一個大元素,3和4捆綁成一個大元素,5和6捆綁成一個大元素,第二步、排列這三個大元素,第三步、在這三個大元素排好后產(chǎn)生的4個空擋中的任何2個排列7和8,第四步、釋放每個大元素(即大元素內(nèi)的每個小元素在捆綁成的大元素內(nèi)部排列),所以共有 個數(shù)。
2、 (20xx。 重慶理)某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰
好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為 ( )
A、B、C、D。
解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學(xué)捆綁成一個大元素,第二步、這個大元素與其它班的5位同學(xué)共6個元素的全排列,第三步、在這個大元素與其它班的`5位同學(xué)共6個元素的全排列排好后產(chǎn)生的7個空擋中排列二班的2位同學(xué),第四步、釋放一班的3位同學(xué)捆綁成的大元素,所以共有 個;而基本事件總數(shù)為 個,所以符合條件的概率為 。故選( B )。
3、(20xx京春理)某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目。如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )
A、42 B、30 C、20 D、12
解析:分兩類:增加的兩個新節(jié)目不相鄰和相鄰,兩個新節(jié)目不相鄰采用插空法,在5個節(jié)目產(chǎn)生的6個空擋排列共有 種,將兩個新節(jié)目捆綁作為一個元素叉入5個節(jié)目產(chǎn)生的6個空擋中的一個位置,再釋放兩個新節(jié)目 捆綁成的大元素,共有 種,再將兩類方法數(shù)相加得42種方法。故選( A )。
三、機(jī)會均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)
解決機(jī)會均等排列問題通常是先對所有元素進(jìn)行全排列,再借助等可能轉(zhuǎn)化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機(jī)率法或?qū)⑻囟樞虻呐帕袉栴}理解為組合問題加以解決。
例4、 7位同學(xué)站成一排。
。1)甲必須站在乙的左邊?
(2)甲、乙和丙三個同學(xué)由左到右排列?
解析:
。1)7位同學(xué)站成一排總的排法共 種,包括甲、乙在內(nèi)的7位同學(xué)排隊(duì)只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機(jī)會是均等的,故滿足要求的排法為 ,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個位置中選出2個位置安排甲、乙, 由于甲在乙的左邊共有 種,再將其余5人在余下的5個位置排列有 種,得排法數(shù)為 種;
。2)參見(1)的分析得 (或 )。
本文通過較為清晰的脈絡(luò)把排列問題分為三種類型,使我們對排列問題有了比較系統(tǒng)的認(rèn)識。但由于排列問題種類繁多,總會有些問題不能囊括其中,也一定存在許多不足,希望讀者能和我一起研究完善。
高三數(shù)學(xué)教案 6
一、教學(xué)目標(biāo)
1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。
2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式。
二、能力目標(biāo)
1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象思維能力。
2、通過由已知信息寫一次函數(shù)表達(dá)式的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。
三、情感目標(biāo)
1、通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。
2、經(jīng)歷利用一次函數(shù)解決實(shí)際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。
四、教學(xué)重難點(diǎn)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
五、教學(xué)過程
1、新課導(dǎo)入有關(guān)函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的增加,彈簧的長度相應(yīng)的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。
(1)計(jì)算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時(shí)彈簧的長度
(2)你能寫出x與y之間的關(guān)系式嗎?
分析:當(dāng)不掛物體時(shí),彈簧長度為3厘米,當(dāng)掛1千克物體時(shí),增加0.5厘米,總長度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時(shí),彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的.關(guān)系嗎?(y=1000.18x或y=100 x)接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。
3、一次函數(shù),正比例函數(shù)的概念若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
4、例題講解例1:下列函數(shù)中,y是x的一次函數(shù)的是( ) ①y=x6;②y= ;③y= ;④y=7x A、①②③ B、①③④ C、①②③④ D、②③④分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B
高三數(shù)學(xué)教案 7
一、教學(xué)內(nèi)容分析
本小節(jié)是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的最值與解問題;運(yùn)用線性規(guī)劃知識解決一些簡單的實(shí)際問題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識解決實(shí)際問題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。
二、學(xué)生學(xué)習(xí)情況分析
本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對于將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,數(shù)形結(jié)合思想有所了解.但從數(shù)學(xué)知識上看學(xué)生對于涉及多個已知數(shù)據(jù)、多個字母變量,多個不等關(guān)系的知識接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對于圖解法還缺少認(rèn)識,對數(shù)形結(jié)合的思想方法的掌握還需時(shí)日,而這些都將成為學(xué)生學(xué)習(xí)中的難點(diǎn)。
三、設(shè)計(jì)思想
以問題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗(yàn)“從實(shí)際問題到數(shù)學(xué)問題”的數(shù)學(xué)建模過程,體會“從具體到一般”的.抽象思維過程,從“特殊到一般”的探究新知的過程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問題、解決問題的能力。
四、教學(xué)目標(biāo)
1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區(qū)域刻畫二元一次不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法求線性目標(biāo)函數(shù)的最值與相應(yīng)解;
2、過程與方法:從實(shí)際問題中抽象出簡單的線性規(guī)劃問題,提高學(xué)生的數(shù)學(xué)建模能力;在探究的過程中讓學(xué)生體驗(yàn)到數(shù)學(xué)活動中充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、化歸能力、探索能力、合情推理能力;
3、情態(tài)與價(jià)值:在應(yīng)用圖解法解題的過程中,培養(yǎng)學(xué)生的化歸能力與運(yùn)用數(shù)形結(jié)合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識;體驗(yàn)數(shù)學(xué)來源于生活而服務(wù)于生活的特性.
五、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):從實(shí)際問題中抽象出二元一次不等式(組),用平面區(qū)域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規(guī)劃問題;
難點(diǎn):二元一次不等式所表示的平面區(qū)域的探究,從實(shí)際情境中抽象出數(shù)學(xué)問題的過程探究,簡單的二元線性規(guī)劃問題的圖解法的探究.
六、教學(xué)基本流程
第一課時(shí),利用生動的情景激起學(xué)生求知的欲望,從中抽象出數(shù)學(xué)問題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問題的引出埋下伏筆.通過學(xué)生的自主探究,分類討論,大膽猜想,細(xì)心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個難點(diǎn);通過例1、例2的討論與求解引導(dǎo)學(xué)生歸納出畫二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點(diǎn)定域);最后通過練習(xí)加以鞏固。
第二課時(shí),重現(xiàn)引例,在學(xué)生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結(jié)出從實(shí)際問題中抽象出數(shù)學(xué)問題的基本過程:理清數(shù)據(jù)關(guān)系(列表)→設(shè)立決策變量→建立數(shù)學(xué)關(guān)系式→畫出平面區(qū)域.讓學(xué)生對例3、例4進(jìn)行分析與討論進(jìn)一步完善這一過程,突破本小節(jié)的第二個難點(diǎn)。
第三課時(shí),設(shè)計(jì)情景,借助前兩個課時(shí)所學(xué),設(shè)立決策變量,畫出平面區(qū)域并引出新的問題,從中引出線性規(guī)劃的相關(guān)概念,并讓學(xué)生思考探究,利用特殊值進(jìn)行猜測,找到方案;再引導(dǎo)學(xué)生對目標(biāo)函數(shù)進(jìn)行變形轉(zhuǎn)化,利用直線的圖象對上述問題進(jìn)行幾何探究,把最值問題轉(zhuǎn)化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學(xué)生在討論中達(dá)成共識,總結(jié)出簡單線性規(guī)劃問題的圖解法的基本步驟.通過例5的展示讓學(xué)生從動態(tài)的角度感受圖解法。最后再現(xiàn)情景1,并對之作出完美的解答。
第四課時(shí),給出新的引例,讓學(xué)生體會到線性規(guī)劃問題的普遍性。讓學(xué)生討論分析,對引例給出解答,并綜合前三個課時(shí)的教學(xué)內(nèi)容,連綴成線,總結(jié)出簡單線性規(guī)劃的應(yīng)用性問題的一般解答步驟,通過例6,例7的分析與展示進(jìn)一步完善這一過程?偨Y(jié)線性規(guī)劃的應(yīng)用性問題的幾種類型,讓學(xué)生更深入的體會到優(yōu)化理論,更好的認(rèn)識到數(shù)學(xué)來源于生活而運(yùn)用于生活的特點(diǎn)。
高三數(shù)學(xué)教案 8
【教學(xué)目標(biāo)】
1.初步理解集合的概念,知道常用數(shù)集的概念及其記法.
2.理解集合的三個特征,能判斷集合與元素之間的關(guān)系,正確使用符號 .
3.能根據(jù)集合中元素的特點(diǎn),使用適當(dāng)?shù)姆椒ê蜏?zhǔn)確的語言將其表示出來,并從中體會到用數(shù)學(xué)抽象符號刻畫客觀事物的優(yōu)越性.
【考綱要求】
1. 知道常用數(shù)集的概念及其記法.
2. 理解集合的三個特征,能判斷集合與元素之間的關(guān)系,正確使用符號 .
【課前導(dǎo)學(xué)】
1.集合的含義: 構(gòu)成一個集合.
(1)集合中的'元素及其表示: .
(2)集合中的元素的特性: .
(3)元素與集合的關(guān)系:
(i)如果a是集合A的元素,就記作__________讀作“___________________”;
(ii)如果a不是集合A的元素,就記作______或______讀作“_______________”.
【思考】構(gòu)成集合的元素是不是只能是數(shù)或點(diǎn)?
【答】
2.常用數(shù)集及其記法:
一般地,自然數(shù)集記作____________,正整數(shù)集記作__________或___________,整數(shù)集記作________,有理數(shù)記作_______,實(shí)數(shù)集記作________.
3.集合的分類:
按它的元素個數(shù)多少來分:
(1)________________________叫做有限集;
(2)___________________ _____叫做無限集;
(3)______________ _叫做空集,記為_____________
4.集合的表示方法:
(1)______ __________________叫做列舉法;
(2)________________ ________叫做描述法.
(3)______ _________叫做文氏圖
【例題講解】
例1、 下列每組對象能否構(gòu)成一個集合?
(1) 高一年級所有高個子的學(xué)生;
(2)平面上到原點(diǎn)的距離等于2的點(diǎn)的全體;
(3)所有正三角形的全體;
(4)方程 的實(shí)數(shù)解;
(5)不等式 的所有實(shí)數(shù)解.
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?/p>
、儆伤写笥10且小于20的整數(shù)組成的集合記作 ;
②直線 上點(diǎn)的集合記作 ;
③不等式 的解組成的集合記作 ;
、芊匠探M 的解組成的集合記作 ;
、莸谝幌笙薜狞c(diǎn)組成的集合記作 ;
、拮鴺(biāo)軸上的點(diǎn)的集合記作 .
例3、已知集合 ,若 中至多只有一個元素,求實(shí)數(shù) 的取值范圍.
【課堂檢測】
1.下列對象組成的集體:①不超過45的正整數(shù);②鮮艷的顏色;③中國的大城市;④絕對值最小的實(shí)數(shù);⑤高一(2)班中考500分以上的學(xué)生,其中為集合的是____________
2.已知2a∈A,a2-a∈A,若A含2個元素,則下列說法中正確的是
、賏取全體實(shí)數(shù); ②a取除去0以外的所有實(shí)數(shù);
、踑取除去3以外的所有實(shí)數(shù);④a取除去0和3以外的所有實(shí)數(shù)
3.已知集合 ,則滿足條件的實(shí)數(shù)x組成的集合
【教學(xué)反思】
§1.1 集合的含義及其表示
高三數(shù)學(xué)教案 9
【教學(xué)目標(biāo)】:
。1)知識目標(biāo):
通過實(shí)例,了解簡單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;
。2)過程與方法目標(biāo):
了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會對新命題作出真假的判斷;
。3)情感與能力目標(biāo):
在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能。
【教學(xué)重點(diǎn)】:
通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。
【教學(xué)難點(diǎn)】:
簡潔、準(zhǔn)確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。
【教學(xué)過程設(shè)計(jì)】:
教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計(jì)意圖
情境引入問題:
下列三個命題間有什么關(guān)系?
。1)12能被3整除;
。2)12能被4整除;
。3)12能被3整除且能被4整除;通過數(shù)學(xué)實(shí)例,認(rèn)識用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題可以得到一個新命題;
知識建構(gòu)歸納總結(jié):
一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,記作,讀作“p且q”。
引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析,概括出一般特征。
1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。
2、引導(dǎo)學(xué)生閱讀教科書上的例2中每個命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的'邏輯錯誤。
歸納總結(jié):
當(dāng)p,q都是真命題時(shí),是真命題,當(dāng)p,q兩個命題中有一個是假命題時(shí),是假命題,學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。
引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。
高三數(shù)學(xué)教案 10
一、教學(xué)內(nèi)容分析
本小節(jié)是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的最值與解問題;運(yùn)用線性規(guī)劃知識解決一些簡單的實(shí)際問題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識解決實(shí)際問題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。
二、學(xué)生學(xué)習(xí)情況分析
本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對于將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,數(shù)形結(jié)合思想有所了解。但從數(shù)學(xué)知識上看學(xué)生對于涉及多個已知數(shù)據(jù)、多個字母變量,多個不等關(guān)系的知識接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對于圖解法還缺少認(rèn)識,對數(shù)形結(jié)合的思想方法的掌握還需時(shí)日,而這些都將成為學(xué)生學(xué)習(xí)中的難點(diǎn)。
三、設(shè)計(jì)思想
以問題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗(yàn)“從實(shí)際問題到數(shù)學(xué)問題”的數(shù)學(xué)建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問題、解決問題的能力。
四、教學(xué)目標(biāo)
1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區(qū)域刻畫二元一次不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法求線性目標(biāo)函數(shù)的最值與相應(yīng)解;
2、過程與方法:從實(shí)際問題中抽象出簡單的線性規(guī)劃問題,提高學(xué)生的數(shù)學(xué)建模能力;在探究的過程中讓學(xué)生體驗(yàn)到數(shù)學(xué)活動中充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、化歸能力、探索能力、合情推理能力;
3、情態(tài)與價(jià)值:在應(yīng)用圖解法解題的過程中,培養(yǎng)學(xué)生的化歸能力與運(yùn)用數(shù)形結(jié)合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識;體驗(yàn)數(shù)學(xué)來源于生活而服務(wù)于生活的.特性。
五、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):從實(shí)際問題中抽象出二元一次不等式(組),用平面區(qū)域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規(guī)劃問題;
難點(diǎn):二元一次不等式所表示的平面區(qū)域的探究,從實(shí)際情境中抽象出數(shù)學(xué)問題的過程探究,簡單的二元線性規(guī)劃問題的圖解法的探究。
六、教學(xué)基本流程
第一課時(shí),利用生動的情景激起學(xué)生求知欲,從中抽象出數(shù)學(xué)問題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問題的引出埋下伏筆。通過學(xué)生的自主探究,分類討論,大膽猜想,細(xì)心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個難點(diǎn);通過例1、例2的討論與求解引導(dǎo)學(xué)生歸納出畫二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點(diǎn)定域);最后通過練習(xí)加以鞏固。
第二課時(shí),重現(xiàn)引例,在學(xué)生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結(jié)出從實(shí)際問題中抽象出數(shù)學(xué)問題的基本過程:理清數(shù)據(jù)關(guān)系(列表)→設(shè)立決策變量→建立數(shù)學(xué)關(guān)系式→畫出平面區(qū)域。讓學(xué)生對例3、例4進(jìn)行分析與討論進(jìn)一步完善這一過程,突破本小節(jié)的第二個難點(diǎn)。
第三課時(shí),設(shè)計(jì)情景,借助前兩個課時(shí)所學(xué),設(shè)立決策變量,畫出平面區(qū)域并引出新的問題,從中引出線性規(guī)劃的相關(guān)概念,并讓學(xué)生思考探究,利用特殊值進(jìn)行猜測,找到方案;再引導(dǎo)學(xué)生對目標(biāo)函數(shù)進(jìn)行變形轉(zhuǎn)化,利用直線的圖象對上述問題進(jìn)行幾何探究,把最值問題轉(zhuǎn)化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學(xué)生在討論中達(dá)成共識,總結(jié)出簡單線性規(guī)劃問題的圖解法的基本步驟。通過例5的展示讓學(xué)生從動態(tài)的角度感受圖解法。最后再現(xiàn)情景1,并對之作出完美的解答。
第四課時(shí),給出新的引例,讓學(xué)生體會到線性規(guī)劃問題的普遍性。讓學(xué)生討論分析,對引例給出解答,并綜合前三個課時(shí)的教學(xué)內(nèi)容,連綴成線,總結(jié)出簡單線性規(guī)劃的應(yīng)用性問題的一般解答步驟,通過例6,例7的分析與展示進(jìn)一步完善這一過程?偨Y(jié)線性規(guī)劃的應(yīng)用性問題的幾種類型,讓學(xué)生更深入的體會到優(yōu)化理論,更好的認(rèn)識到數(shù)學(xué)來源于生活而運(yùn)用于生活的特點(diǎn)。
高三數(shù)學(xué)教案 11
一、課前檢測
1.在數(shù)列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數(shù)列{bn}的前n項(xiàng)的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,bn=2n2n+12=8(1n-1n+1) 數(shù)列{bn}的前n項(xiàng)和為
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各項(xiàng)不為零的數(shù)列 中, 。
(1)求數(shù)列 的通項(xiàng);
(2)若數(shù)列 滿足 ,數(shù)列 的前 項(xiàng)的和為 ,求
解:(1)依題意, ,故可將 整理得:
所以 即
,上式也成立,所以
(2)
二、知識梳理
(一)前n項(xiàng)和公式Sn的'定義:Sn=a1+a2+an。
(二)數(shù)列求和的方法(共8種)
5.錯位相減法:適用于差比數(shù)列(如果 等差, 等比,那么 叫做差比數(shù)列)即把每一項(xiàng)都乘以 的公比 ,向后錯一項(xiàng),再對應(yīng)同次項(xiàng)相減,轉(zhuǎn)化為等比數(shù)列求和。
如:等比數(shù)列的前n項(xiàng)和就是用此法推導(dǎo)的.
解讀:
6.累加(乘)法
解讀:
7.并項(xiàng)求和法:一個數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.
形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求。
解讀:
8.其它方法:歸納、猜想、證明;周期數(shù)列的求和等等。
解讀:
三、典型例題分析
題型1 錯位相減法
例1 求數(shù)列 前n項(xiàng)的和.
解:由題可知{ }的通項(xiàng)是等差數(shù)列{2n}的通項(xiàng)與等比數(shù)列{ }的通項(xiàng)之積
設(shè) ①
、 (設(shè)制錯位)
、-②得 (錯位相減)
變式訓(xùn)練1 (2010昌平模擬)設(shè)數(shù)列{an}滿足a1+3a2+32a3++3n-1an=n3,nN*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3, ①
當(dāng)n2時(shí),a1+3a2+32a3++3n-2an-1=n-13. ②
、-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,適合an=13n, an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n 3n, ③
3Sn=32+233+334++n 3n+1. ④
、-③得2Sn=n 3n+1-(3+32+33++3n),即2Sn=n 3n+1-3(1-3n)1-3, Sn=(2n-1)3n+14+34.
小結(jié)與拓展:
題型2 并項(xiàng)求和法
例2 求 =1002-992+982-972++22-12
解: =1002-992+982-972++22-12=(100+ 99)+(98+97)++(2+1)=5050.
變式訓(xùn)練2 數(shù)列{(-1)nn}的前2010項(xiàng)的和S2 010為( D )
A.-2010 B.-1005 C.2010 D.1005
解:S2 010=-1+2-3+4-5++2 008-2 009+2 010
=(2-1)+(4-3)+(6-5)++(2 010-2 009)=1 005.
小結(jié)與拓展:
題型3 累加(乘)法及其它方法:歸納、猜想、證明;周期數(shù)列的求和等等
例3 (1)求 之和.
(2)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)的乘積等于Tn= (nN*),,則數(shù)列{bn}的前n項(xiàng)和Sn中最大的一項(xiàng)是( D )
A.S6 B.S5 C.S4 D.S3
解:(1)由于 (找通項(xiàng)及特征)
= (分組求和)= =
=
(2)D.
變式訓(xùn)練3 (1)(2009福州八中)已知數(shù)列 則 , 。答案:100. 5000。
(2)數(shù)列 中, ,且 ,則前2010項(xiàng)的和等于( A )
A.1005 B.2010 C.1 D.0
小結(jié)與拓展:
四、歸納與總結(jié)(以學(xué)生為主,師生共同完成)
以上一個8種方法雖然各有其特點(diǎn),但總的原則是要善于改變原數(shù)列的形式結(jié)構(gòu),使其能進(jìn)行消項(xiàng)處理或能使用等差數(shù)列或等比數(shù)列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規(guī)律,就能使數(shù)列求和化難為易,迎刃而解。
高三數(shù)學(xué)教案 12
一、目前數(shù)學(xué)復(fù)習(xí)中,影響數(shù)學(xué)成績提高的情況分析
就目前而言,文科班大部分學(xué)生對數(shù)學(xué)學(xué)習(xí)缺乏主動性、積極性,其主要表現(xiàn)有:
1、不制定復(fù)習(xí)計(jì)劃,課前不進(jìn)行認(rèn)真的預(yù)習(xí),有的同學(xué)基礎(chǔ)本就薄弱,因而上課時(shí)無法跟上老師的節(jié)奏,導(dǎo)致聽課效率低下,成績進(jìn)步不大。
2、對老師布置的作業(yè),不獨(dú)立思考完成,抄襲別人的作業(yè),敷衍了事。
3、對復(fù)習(xí)過的相關(guān)概念不求甚解,輕視三基(基本知識、基本技能、基本方法)的復(fù)習(xí)。
4、作業(yè)書寫不認(rèn)真,解題思路不清晰、過程不規(guī)范。
5、復(fù)習(xí)方法不當(dāng),復(fù)習(xí)時(shí)不能抓住一個核心知識,擴(kuò)散思維,舉一反三,總結(jié)規(guī)律。
6、時(shí)間支配不合理,再加上受考試失敗的打擊,對數(shù)學(xué)產(chǎn)生恐懼心理,甚至產(chǎn)生厭學(xué)情緒。
以上存在的情況,必須引起同學(xué)們的高度重視,立即加以糾正。
二、如何學(xué)好數(shù)學(xué),提高數(shù)學(xué)復(fù)習(xí)成績,必須注重以下七個方面:
1、每節(jié)課必須做到課前預(yù)習(xí),把課上要講的習(xí)題和內(nèi)容過一遍,課前預(yù)習(xí)是學(xué)好數(shù)學(xué)不可缺少的環(huán)節(jié),預(yù)習(xí)的目的就是知道老師下節(jié)課所講的內(nèi)容,在這些內(nèi)容中,哪些是已經(jīng)掌握的,哪些知識還一知半解,存在哪些疑點(diǎn)、難點(diǎn),整理自己的解題思路,看看和老師的思路是否對路,是否還有更好的方法,做到心中有數(shù)。這樣才能提高課堂的聽講效率,不讓疑點(diǎn)輕易溜過。
2、上課必須全神貫注,做到耳到、眼到、心到、口到、手到。耳到就是專心聽講,聽老師對問題的分析,自己從中得到什么樣的啟發(fā)。眼到:上課既要看講義,又要看老師板書,二者必須有機(jī)兼顧,學(xué)習(xí)老師的板書布局,提高自己解題的規(guī)范化。心到是指用心思考,跟上老師的解題思路,認(rèn)真體會老師是如何抓住問題的重點(diǎn),如何抓住問題的本質(zhì)和解題的方向的。口到就是積極思維,隨時(shí)準(zhǔn)備回答老師的問題。手到就是在聽、看、想、說的基礎(chǔ)上,劃出知識的重點(diǎn)、難點(diǎn),并且要將老師講課的重點(diǎn),要點(diǎn)記錄下來,記憶老師分析問題的方法和技巧,以便課后復(fù)習(xí)之用,同時(shí)要認(rèn)真做好老師布置的作業(yè)。課堂上最忌諱以聽懂為目標(biāo),最好能摘抄老師的講解步驟,必要時(shí)甚至可以背誦一部分關(guān)鍵步驟。
3、課后必須認(rèn)真回憶、折磨和反思,許多同學(xué)對課上沒弄懂的題目,不是認(rèn)真琢磨,而是立即請教其他同學(xué),這樣即使知道答案或者解題方法,記憶效果也不會很好;仡櫼恍┑湫屠},通過反思進(jìn)一步加深認(rèn)知印象,日積月累,很快就能舉一反三,提高自己的思維能力和解決問題的能力,這是提高數(shù)學(xué)成績的一個非常重要的方法。只有回想得起來的知識,才能內(nèi)化成為自己的知識。最關(guān)鍵也是大家最容易忽視的一點(diǎn)是,不懂的題目,經(jīng)過老師或者同學(xué)講解以后,弄懂了,就放在一邊不再過問,如果過兩天再拿出來,發(fā)現(xiàn)自己又不懂了。所以,對于難題、不懂的.題目我們應(yīng)該采用滾動復(fù)習(xí)的方法,隔幾天就把前幾天的內(nèi)容拿出來回顧一遍。
4、必須做好每章節(jié)的復(fù)習(xí)小結(jié),每章節(jié)的知識復(fù)習(xí)結(jié)束后,要進(jìn)行階段性的小結(jié),同樣采取回憶式的方法,先不看課本,不看講義,不看課堂筆記,認(rèn)真回憶該章節(jié)的知識脈絡(luò),回憶一些具有代表性的“樣板”題型,尤其是解決這類問題的通法,然后再打開講義和筆記,認(rèn)真對照,使知識網(wǎng)絡(luò)和思路更進(jìn)一步完善。
5、必須完成一定數(shù)量的數(shù)學(xué)練習(xí)和數(shù)學(xué)作業(yè),在應(yīng)試考試的大背景下,要準(zhǔn)確的掌握基本知識、基本方法和基本技巧,不做一定數(shù)量的練習(xí)和作業(yè)是絕對不行的,只有多做練習(xí),才能熟而生巧,才能提高解題能力和解題速度,才能提高解題的準(zhǔn)確性和考試的成功率。并且在做題后要“回頭看”,看自己解題時(shí)用到了哪些基本知識和數(shù)學(xué)方法,看一看還有沒有其他的方法或思路,另外,無論是作業(yè)還是考試,要始終把解題的準(zhǔn)確性放在第一位,把解題的通法排在第一位,而不是一味的追求速度、技巧和捷徑,這是數(shù)學(xué)成績提高的重要保證。
6、必須正確估計(jì)自己的數(shù)學(xué)水平和數(shù)學(xué)學(xué)習(xí)能力,確立自己切實(shí)可行的數(shù)學(xué)復(fù)習(xí)起點(diǎn)和數(shù)學(xué)成績的學(xué)習(xí)目標(biāo),對高三文科班的絕大部分同學(xué)而言,數(shù)學(xué)基礎(chǔ)不如理科生,畢竟文理科的思維差異是客觀存在的,大家必須認(rèn)識到這一點(diǎn)。因此,數(shù)學(xué)復(fù)習(xí)必須要狠抓基礎(chǔ)復(fù)習(xí)。通過復(fù)習(xí),能運(yùn)用所掌握的知識去分析問題,解決最基本的填空題和中檔題,尤其是數(shù)學(xué)基礎(chǔ)比較薄弱的同學(xué),起點(diǎn)必須是從課本開始,看課本上的概念和例題,做課本上的習(xí)題。如果課本上的概念都不清楚,數(shù)學(xué)復(fù)習(xí)就成了無源之水,無本之木。對復(fù)習(xí)講義上的題目,能做多少就做多少,對于難題,要學(xué)會主動放棄,沒有必要去浪費(fèi)時(shí)間。如果真正把基本的東西弄懂了,高考110分是沒有問題的。對于基礎(chǔ)掌握的較好的同學(xué),同樣不能忽視“三基”的復(fù)習(xí),要熟練掌握基礎(chǔ)。講義、周練、月考試卷上的題目必須逐題過關(guān),學(xué)校所發(fā)的資料必須充分利用。確保填空題、中檔題不失分或少失分,牢牢抓住80%(試卷結(jié)構(gòu)易、中、難比例為4:4:2)不放松,再根據(jù)可能,完成后兩道題中的容易部分,高考向135沖刺。個別基礎(chǔ)很好的同學(xué),要準(zhǔn)確把握自己,不要故步自封,而是應(yīng)該腳踏實(shí)地,充分發(fā)揚(yáng)“釘子”精神,有鉆勁有干勁有耐力,通過復(fù)習(xí),掌握一些新題型的解決方法,注重知識的靈活運(yùn)用,創(chuàng)新解題,高考向145分沖刺。
7、必須掌握行之有效的考試方法,這是提高考試成績的的最后一道關(guān)卡。每次考試,不管是周練還是月考,高考,都要足夠重視,養(yǎng)成良好的應(yīng)試習(xí)慣?荚嚨幕驹瓌t是:讀題一字一句的讀,讀清的基礎(chǔ)上讀懂,認(rèn)真審題,在題意不清的情況下,切不可輕易動筆。胡亂審題,輕易下筆,這是考試中的大忌。要遵循先易后難的原則,從前至后,依次答題,中途碰到不懂,無法下手的題目,要舍得暫時(shí)放棄或及時(shí)變換思路角度,絕不可打攻堅(jiān)戰(zhàn),消耗過多的時(shí)間,會做的題目,千萬不要出現(xiàn)計(jì)算上的失誤,這種失誤在高考閱卷中經(jīng)常會造成整道試題的錯誤而失去本該拿到的分?jǐn)?shù)。
總之,對于數(shù)學(xué)復(fù)習(xí)可以概括為:課前預(yù)習(xí),找出不足;
課上聽講,解決問題;
課后復(fù)習(xí),鞏固疑難。日輕周結(jié)階段過關(guān)。
一、理清概念、夯實(shí)基礎(chǔ)
1.要透徹理解各章節(jié)公式定理,數(shù)學(xué)試卷中的各個小題都是依據(jù)各章節(jié)的概念、公式定理及知識點(diǎn)來進(jìn)行的,它們是解題的理論基礎(chǔ),同時(shí)也是提高解題能力的關(guān)鍵所在。因此要透徹理解各種定義的由來、內(nèi)容、特征,掌握其本質(zhì),并注意新舊概念間的有機(jī)聯(lián)系,使數(shù)學(xué)各個基礎(chǔ)知識點(diǎn)成為判斷的有力工具。
2.要明確定理、公式的成立條件、推證思路、主要功能,只有這樣,應(yīng)用時(shí)才會心中有數(shù)、有的放矢。比如:在等差數(shù)列中定義用于證明是否等差數(shù)列。
學(xué)習(xí)數(shù)學(xué)概念不僅要解決是什么與怎么樣的問題,更要解決是怎樣想到的即怎么來的問題,以及有了這個概念以后,理論將怎樣建立與發(fā)展起來。這樣弄清概念、公式、法則、定理的來龍去脈,了解公式的推導(dǎo)過程及實(shí)際意義,使新舊知識聯(lián)成一片,才能掌握完整的、系統(tǒng)的知識,才會運(yùn)用,即使在忘記了的時(shí)候也能自己推導(dǎo)出來。
3.要在對定理、公式理解變通的基礎(chǔ)上牢固記憶,以記導(dǎo)用,以用促記,這樣,用起來才能得心應(yīng)手。
二、總結(jié)技巧、重寫錯題
要認(rèn)真領(lǐng)會數(shù)學(xué)教材中的例題,做到舉一反三,觸類旁通。要認(rèn)真總結(jié)其中的規(guī)律,歸納其中所用的技巧和思路,學(xué)會運(yùn)用這些技巧和思路來解決問題。
比如,準(zhǔn)備一本錯題本與典型題本,把平時(shí)不會做與做錯的題,重新認(rèn)真地做一遍,并加以總結(jié)出技巧,找出原來錯誤所在,并把正確的做法記住。
三、掌握方法、提高解題技能
解題練習(xí)是數(shù)學(xué)學(xué)習(xí)中最基本的訓(xùn)練方法,一定要思路開闊,靈活多變。解題證題也是學(xué)好數(shù)學(xué)的重要方面,做足夠數(shù)量的習(xí)題練習(xí),是鞏固數(shù)學(xué)基礎(chǔ)知識和掌握基本技能的必要途徑。
解題能力的高低,證題方法的得當(dāng),決定于分析問題和解決問題的能力。這種能力一方面取決于對基礎(chǔ)知識的理解程度,另一方面又是在練習(xí)作業(yè)中鍛煉培養(yǎng)出來的。在練習(xí)作業(yè)中會訓(xùn)練思維,開拓思路。
一、指導(dǎo)思想
高三第一、二輪復(fù)習(xí)一般以知識、技能、方法的逐點(diǎn)掃描和梳理為主,通過第一、二輪復(fù)習(xí),學(xué)生大都能掌握基本概念的性質(zhì)、定理及其一般應(yīng)用,但知識較為零散,綜合應(yīng)用存在較大的問題。第三輪復(fù)習(xí)的首要任務(wù)是把整個高中基礎(chǔ)知識有機(jī)地結(jié)合在一起,強(qiáng)化數(shù)學(xué)的學(xué)科特點(diǎn),同時(shí)第三輪復(fù)習(xí)承上啟下,是促進(jìn)知識靈活運(yùn)用的關(guān)鍵時(shí)期,是發(fā)展學(xué)生思維水平、提高綜合能力發(fā)展的關(guān)鍵時(shí)期,因而對講、練、檢測要求較高。
強(qiáng)化高中數(shù)學(xué)主干知識的復(fù)習(xí),形成良好知識網(wǎng)絡(luò)。整理知識體系,總結(jié)解題規(guī)律,模擬高考情境,提高應(yīng)試技巧,掌握通性通法。
第三輪復(fù)習(xí)承上啟下,是知識系統(tǒng)化、條理化,促進(jìn)靈活運(yùn)用的關(guān)鍵時(shí)期,是促進(jìn)學(xué)生素質(zhì)、能力發(fā)展的關(guān)鍵時(shí)期,因而對講練、檢測等要求較高,故有“三輪看水平”之說.
“三輪看水平”概括了第二輪復(fù)習(xí)的思路,目標(biāo)和要求.具體地說,一是要看教師對《考試大綱》的理解是否深透,研究是否深入,把握是否到位,明確“考什么”、“怎么考”.二是看教師講解、學(xué)生練習(xí)是否體現(xiàn)階段性、層次性和漸進(jìn)性,做到減少重復(fù),重點(diǎn)突出,讓大部分學(xué)生學(xué)有新意,學(xué)有收獲,學(xué)有發(fā)展.三是看知識講解、練習(xí)檢測等內(nèi)容科學(xué)性、針對性是否強(qiáng),使模糊的清晰起來,缺漏的填補(bǔ)起來,雜亂的條理起來,孤立的聯(lián)系起來,讓學(xué)生形成系統(tǒng)化、條理化的知識框架.四是看練習(xí)檢測與高考是否對路,不拔高,不降低,難度適宜,效度良好,重在基礎(chǔ)的靈活運(yùn)用和掌握分析解決問題的思維方法.
二、時(shí)間安排:
1.第一階段為重點(diǎn)主干知識的鞏固加強(qiáng)與數(shù)學(xué)思想方法專項(xiàng)訓(xùn)練階段,時(shí)間為3月10——4月30日。
2.第二階段是進(jìn)行各種題型的解題方法和技能專項(xiàng)訓(xùn)練,時(shí)間為5月1日——5月25日。
3.最后階段學(xué)生自我檢查階段,時(shí)間為5月25日——6月6日。
三、怎樣上好第三輪復(fù)習(xí)課的幾點(diǎn)建議:
。ㄒ唬.明確“主體”,突出重點(diǎn)。
第三輪復(fù)習(xí),教師必須明確重點(diǎn),對高考“考什么”,“怎樣考”,應(yīng)了若指掌.只有這樣,才能講深講透,講練到位.因此,每位教師要研究2009-2010湖南對口高考試題.
第三輪復(fù)習(xí)的形式和內(nèi)容
1.形式及內(nèi)容:分專題的形式,具體而言有以下八個專題。
。1)集合、函數(shù)與導(dǎo)數(shù)。此專題函數(shù)和導(dǎo)數(shù)、應(yīng)用導(dǎo)數(shù)知識解決函數(shù)問題是重點(diǎn),特別要注重交匯問題的訓(xùn)練。
(2)三角函數(shù)、平面向量和解三角形。此專題中平面向量和三角函數(shù)的圖像與性質(zhì),恒等變換是重點(diǎn)。
。3)數(shù)列。此專題中數(shù)列是重點(diǎn),同時(shí)也要注意數(shù)列與其他知識交匯問題的訓(xùn)練。
。4)立體幾何。此專題注重點(diǎn)線面的關(guān)系,用空間向量解決點(diǎn)線面的問題是重點(diǎn)。
(5)解析幾何。此專題中解析幾何是重點(diǎn),以基本性質(zhì)、基本運(yùn)算為目標(biāo)。突出直線和圓錐曲線的交點(diǎn)、弦長、軌跡等。
(6)不等式、推理與證明。此專題中不等式是重點(diǎn),注重不等式與其他知識的整合。
(7)排列與組合,二項(xiàng)式定理,概率與統(tǒng)計(jì)、復(fù)數(shù)。此專題中概率統(tǒng)計(jì)是重點(diǎn),以摸球問題為背景理解概率問題。
。9)高考數(shù)學(xué)思想方法專題。此專題中函數(shù)與方程、數(shù)形結(jié)合、化歸與轉(zhuǎn)化、分類討論思想方法是重點(diǎn)。
。ǘ⒆龅剿膫轉(zhuǎn)變。
1.變介紹方法為選擇方法,突出解法的發(fā)現(xiàn)和運(yùn)用.
2.變?nèi)娓采w為重點(diǎn)講練,突出高考“熱點(diǎn)”問題.
3.變以量為主為以質(zhì)取勝,突出講練落實(shí).
4.變以“補(bǔ)弱”為主為“揚(yáng)長補(bǔ)弱”并舉,突出因材施教
5.做好六個“重在”。重在解題思想的分析,即在復(fù)習(xí)中要及時(shí)將四種常見的數(shù)學(xué)思想滲透到解題中去;
重在知識要點(diǎn)的梳理,即第三輪復(fù)習(xí)不像第一、二輪復(fù)習(xí),沒有必要將每一個知識點(diǎn)都講到,但是要將重要的知識點(diǎn)用較多的時(shí)間重點(diǎn)講評,及時(shí)梳理;
重在解題方法的總結(jié),即在講評試題中關(guān)聯(lián)的解題方法要給學(xué)生歸類、總結(jié),以達(dá)觸類旁通的效果;
重在學(xué)科特點(diǎn)的提煉,數(shù)學(xué)以概念性強(qiáng),充滿思辨性,量化突出,解法多樣,應(yīng)用廣泛為特點(diǎn),在復(fù)習(xí)中要展現(xiàn)提煉這些特點(diǎn);
重在規(guī)范解法的示范,有些學(xué)生在平時(shí)的解題那怕是考試中很少注意書寫規(guī)范,而高考是分步給分,書寫不規(guī)范,邏輯不連貫會讓學(xué)生把本應(yīng)該得的分丟了,因此教師在復(fù)習(xí)中有必要作一些示范性的解答。
。ㄈ、克服六種偏向。
1.克服難題過多,起點(diǎn)過高.復(fù)習(xí)集中幾個難點(diǎn),講練耗時(shí)過多,不但基礎(chǔ)沒夯實(shí),而且能力也上不去.
2.克服速度過快.內(nèi)容多,時(shí)間短,未做先講或講而不做,一知半解,題目雖熟悉,卻仍不會做.
3.克服只練不講.教師不選范例,不指導(dǎo),忙于選題復(fù)印.
4.克服照抄照搬.對外來資料、試題,不加選擇,整套搬用,題目重復(fù),針對性不強(qiáng).
5.克服集體力量不夠.備課組不調(diào)查學(xué)情,不研究學(xué)生,對某些影響教與學(xué)的現(xiàn)象抓不住或抓不準(zhǔn),教師“頭頭是道,夸夸其談”,學(xué)生“心煩意亂”.不研究高考,復(fù)習(xí)方向出現(xiàn)了偏差.
6.克服高原現(xiàn)象.第三輪復(fù)習(xí)“大考”、“小考”不斷,次數(shù)過多,難度偏大,成績不理想;
形成了心理障礙;
或量大題不難,學(xué)生忙于應(yīng)付,被動做題,興趣下降,思維呆滯.
7.試卷講評隨意,對答案式的講評。對答案式的講評是影響講評課效益的大敵。評講的較好做法應(yīng)該為,講評前認(rèn)真閱卷,講評時(shí)將歸類、糾錯、變式、辯論等方式相結(jié)合,抓錯誤點(diǎn)、失分點(diǎn)、模糊點(diǎn),剖析根源,徹底矯正。
四、在第三輪復(fù)習(xí)過程中,我們安排如下:
1.繼續(xù)抓好集體備課。每周一次的集體備課必須抓落實(shí),發(fā)揮集體智慧的力量研究數(shù)學(xué)高考的動向,學(xué)習(xí)與研究《考試大綱》,注意哪些內(nèi)容降低要求,哪些內(nèi)容成為新的高考熱點(diǎn),每周一次研究課。
2.安排好復(fù)習(xí)內(nèi)容。
3.精選試題,命題審核。
4.測試評講,滾動訓(xùn)練。
5.精講精練:以中等題為主。
高三數(shù)學(xué)學(xué)習(xí)可以分為三個階段:
1.一輪復(fù)習(xí)(至20XX年元旦前后):夯實(shí)基礎(chǔ),構(gòu)建知識體系,強(qiáng)化能力訓(xùn)練;
2.二輪復(fù)習(xí)(從一輪結(jié)束至三模結(jié)束):固化與應(yīng)用,優(yōu)化思維模式;
3.考前沖刺(考前一個月):鞏固已知,調(diào)整狀態(tài)。
一輪復(fù)習(xí)特點(diǎn):時(shí)間長,任務(wù)重,此特點(diǎn)與《課程標(biāo)準(zhǔn)》中“培養(yǎng)學(xué)生實(shí)事求是的態(tài)度,鍥而不舍的精神”吻合;
學(xué)生易懈怠、易迷茫、易焦慮。
一輪復(fù)習(xí)數(shù)學(xué)資料:一輪復(fù)習(xí)講義、教材(10本)、章節(jié)測試、xx年——xx年高考試題分類匯編、xx套模擬試題、20XX年高考真題。
一輪復(fù)習(xí)著重從知識、方法、能力、技巧四方面入手,為實(shí)現(xiàn)二輪復(fù)習(xí)“數(shù)學(xué)思想統(tǒng)領(lǐng)學(xué)習(xí)”的目標(biāo)做下堅(jiān)實(shí)基礎(chǔ)。知識與方法可以跟隨老師的講解及時(shí)整理記憶,與原有知識結(jié)構(gòu)實(shí)現(xiàn)對接,實(shí)現(xiàn)知識與方法的零死角;
能力的提升需要自己細(xì)致扎實(shí)的練習(xí)與思考,基礎(chǔ)能力:總結(jié)反思、語言表達(dá)、閱讀理解,學(xué)科能力:空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理;
技巧是從勤勉的實(shí)踐中點(diǎn)滴積累起來的,是反復(fù)感知與應(yīng)用后沉淀下的極其實(shí)用的小絕招,每個個體總結(jié)的技巧是不盡一致的。
一輪復(fù)習(xí)思路千百種,現(xiàn)僅從“如何搭配練習(xí)冊及試卷的應(yīng)用”的角度對一輪復(fù)習(xí)大致框架加以論述:
1. 無論復(fù)習(xí)哪一學(xué)科,都要有一個系統(tǒng)的練習(xí)過程,認(rèn)準(zhǔn)一本復(fù)習(xí)資料加以練習(xí)不放松。課堂上,按照擬好的“主線”進(jìn)行復(fù)習(xí),“函數(shù)、幾何、概率統(tǒng)計(jì)、運(yùn)算、算法、數(shù)學(xué)應(yīng)用”六條主線將課標(biāo)內(nèi)容縱橫交織,打破資料章節(jié)順序,優(yōu)化組合串講課標(biāo)所要求考點(diǎn)。
2. 新課標(biāo)精神的直接體現(xiàn)就是教材,重讀教材意義重大。要讀初學(xué)時(shí)未關(guān)注的細(xì)節(jié),要關(guān)注數(shù)學(xué)概念、法則、結(jié)論的發(fā)展過程。教材上練習(xí)題不必每道必做,根據(jù)實(shí)際情況,有選擇地挑出一些必做題。我將依照教材內(nèi)容組織一張練習(xí)卷,盡可能檢驗(yàn)出大家對教材的熟悉程度及理解的深度。
3. 必備的章節(jié)模擬訓(xùn)練是不可少的,一段時(shí)間的復(fù)習(xí)后來個小測驗(yàn),及時(shí)對所學(xué)有一個檢驗(yàn),也時(shí)刻提醒我們要注意多回頭看看。章節(jié)測試所用試題由我為大家提供,在每個章末測試一張卷,限時(shí)訓(xùn)練,之后,學(xué)生再進(jìn)行局部彌補(bǔ)性練習(xí)。
4. 前幾年的高考題就是最好的模擬題,去年暑假始,我們已著手做“分類匯編”,一輪復(fù)習(xí)時(shí),緊跟模塊復(fù)習(xí)完成“分類匯編”上尚未完成的任務(wù),并且從做過的試題中尋找規(guī)律性的東西也是必須面對的任務(wù)。
5. 一輪復(fù)習(xí)戰(zhàn)線過長,不對過往重點(diǎn)知識加以多次循環(huán)則不能識其本質(zhì)。天利38套的應(yīng)用:每周每個同學(xué)利用課余時(shí)間寫一套模擬題,每周日晚上“就題論題,不舉一反三”。目的:化整為零,保持新鮮感,給學(xué)生以充分思考交流的空間和時(shí)間。計(jì)劃進(jìn)行20周,余下的試卷由學(xué)生自行處理。
6. 不能急于完成“高考真題”,我們可以使其發(fā)揮更大利用價(jià)值。將這19套真題作為一個研究平臺,我們要逐一細(xì)致分析試卷的規(guī)律性。從哪些角度分析?分析什么內(nèi)容?如何利用分析結(jié)論?這些都會使我們的思考更有條理,使我們的表達(dá)更清晰。
高三數(shù)學(xué)教案 13
一、教材與學(xué)情分析
《隨機(jī)抽樣》是人教版職教新教材《數(shù)學(xué)(必修)》下冊第六章第一節(jié)的內(nèi)容,“簡單隨機(jī)抽樣”是“隨機(jī)抽樣”的基礎(chǔ),“隨機(jī)抽樣”又是“統(tǒng)計(jì)學(xué)‘的基礎(chǔ),因此,在“統(tǒng)計(jì)學(xué)”中,“簡單隨機(jī)抽樣”是基礎(chǔ)的基礎(chǔ)針對這樣的情況,我做了如下的教學(xué)設(shè)想。
二、教學(xué)設(shè)想
(一)教學(xué)目標(biāo):
(1)理解抽樣的必要性,簡單隨機(jī)抽樣的概念,掌握簡單隨機(jī)抽樣的.兩種方法;
(2)通過實(shí)例分析、解決,體驗(yàn)簡單隨機(jī)抽樣的科學(xué)性及其方法的可靠性,培養(yǎng)分析問題,解決問題的能力;
(3)通過身邊事例研究,體會抽樣調(diào)查在生活中的應(yīng)用,培養(yǎng)抽樣思考問題意識,養(yǎng)成良好的個性品質(zhì)。
(二)教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):掌握簡單隨機(jī)抽樣常見的兩種方法(抽簽法、隨機(jī)數(shù)表法)
難點(diǎn):理解簡單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性
為了突出重點(diǎn),突破難點(diǎn),達(dá)到預(yù)期的教學(xué)目標(biāo),我再從教法、學(xué)法上談?wù)勎业慕虒W(xué)思路及設(shè)想。
下面我再具體談?wù)劷虒W(xué)實(shí)施過程,分四步完成。
三、教學(xué)過程
(一)設(shè)置情境,提出問題
〈屏幕出示〉例1:請問下列調(diào)查宜“普查”還是“抽樣”調(diào)查?
A、一鍋水餃的味道
B、旅客上飛機(jī)前的安全檢查
C、一批炮彈的殺傷半徑
D、一批彩電的質(zhì)量情況
E、美國總統(tǒng)的民意支持率
學(xué)生討論后,教師指出生活中處處有“抽樣”,并板書課題——XXXX抽樣
「設(shè)計(jì)意圖」
生活中處處有“抽樣”調(diào)查,明確學(xué)習(xí)“抽樣”的必要性。
(二)主動探究,構(gòu)建新知
〈屏幕出示〉例2:語文老師為了了解電(1)班同學(xué)對某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?
A、在班級12名班委名單中逐個抽查5位同學(xué)進(jìn)行背誦
B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦
先讓學(xué)生分析、選擇B后,師生一起歸納其特征:
(1)不放回逐一抽樣,(2)抽樣有代表性(個體被抽到可能性相等),學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡單隨機(jī)抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補(bǔ)充板書課題——(簡單隨機(jī))抽樣及其定義。
從例1、例2中的正反兩方面,讓學(xué)生體驗(yàn)隨機(jī)抽樣的科學(xué)性。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。
復(fù)習(xí)基本概念,如“總體”、“個體”、“樣本”、“樣本容量”等。
〈屏幕出示〉例4我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會,要使每名學(xué)生的機(jī)會均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>
先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納“抽簽法”步驟:
(1)編號制簽
(2)攪拌均勻
(3)逐個不放回抽取n次。教師板書上面步驟。
請一位同學(xué)說說例3采用“抽簽法”的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、反饋練習(xí)落實(shí)知識點(diǎn)突出重點(diǎn)。
2、體會“抽簽法”具有“簡單、易行”的優(yōu)點(diǎn)。
〈屏幕出示〉例5、第07374期特等獎號碼為08+25+09+21+32+27+13,本期銷售金額19872409元,中獎金額500萬。
提問:特等獎號碼如何確定呢?彩票中獎號碼適合用抽簽法確定嗎?
讓學(xué)生觀看觀看電視搖獎過程,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:
(1)編號
(2)在隨機(jī)數(shù)表上確定起始位置
(3)取數(shù)。教師板書上面步驟。
請一位同學(xué)說說例3采用“隨機(jī)數(shù)表法”的實(shí)施步驟。
高三數(shù)學(xué)教案 14
【教學(xué)目標(biāo)】:
。1)知識目標(biāo):
通過實(shí)例,了解簡單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;
。2)過程與方法目標(biāo):
了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會對新命題作出真假的判斷;
。3)情感與能力目標(biāo):
在知識學(xué)習(xí)的`基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能。
【教學(xué)重點(diǎn)】:
通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。
【教學(xué)難點(diǎn)】:
簡潔、準(zhǔn)確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。
【教學(xué)過程設(shè)計(jì)】:
教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計(jì)意圖
情境引入問題:
下列三個命題間有什么關(guān)系?
。1)12能被3整除;
。2)12能被4整除;
。3)12能被3整除且能被4整除;通過數(shù)學(xué)實(shí)例,認(rèn)識用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題可以得到一個新命題;
知識建構(gòu)歸納總結(jié):
一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,記作,讀作“p且q”。
引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析,概括出一般特征。
1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。
2、引導(dǎo)學(xué)生閱讀教科書上的例2中每個命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。
歸納總結(jié):
當(dāng)p,q都是真命題時(shí),是真命題,當(dāng)p,q兩個命題中有一個是假命題時(shí),是假命題,學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。
引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。
【高三數(shù)學(xué)教案】相關(guān)文章:
高三數(shù)學(xué)教案11-07
人教版高三數(shù)學(xué)教案11-02
人教版高三數(shù)學(xué)教案12-13
高三數(shù)學(xué)教案15篇11-08