初二數(shù)學(xué)教案通用15篇
作為一名教職工,通常會(huì)被要求編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么問題來了,教案應(yīng)該怎么寫?下面是小編收集整理的初二數(shù)學(xué)教案,歡迎大家分享。
初二數(shù)學(xué)教案1
教學(xué)目標(biāo)
1.知道梯形、等腰梯形、直角梯形的有關(guān)概念;能說出并證明等腰梯形的兩個(gè)性質(zhì);等腰梯形同一底上的兩個(gè)角相等;兩條對(duì)角線相等。
2.會(huì)運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算。
3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想。
教學(xué)模式問題解決教學(xué)
教學(xué)過程
想一想:
什么樣的四邊形是平行四邊形?平行四邊形有哪些性質(zhì)?學(xué)生回答后,教師板書以下關(guān)系圖中的有關(guān)部分:
畫一畫:
畫一個(gè)梯形,并指出梯形的上、下底,畫出梯形的高。
問題教學(xué)
問題1:根據(jù)剛才的畫圖,請(qǐng)給梯形下一個(gè)定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學(xué)生自己給梯形下定義,有助于訓(xùn)練學(xué)生觀察、概括和語言表述的能力。如果學(xué)生定義時(shí),遺漏了"另一組對(duì)邊不平行"教師可舉及例(2)對(duì)梯形的定義,還可以讓學(xué)生討論以下問題:一組對(duì)邊平行且這組對(duì)邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關(guān)系圖,并結(jié)合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計(jì)算面積時(shí)高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長(zhǎng)度。畫高時(shí)可以從上底任一點(diǎn)向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構(gòu)造直角三角形,便于計(jì)算。)
問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請(qǐng)你給這兩種四邊形命名。(說明與建議:學(xué)生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會(huì)有困難;教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的'高)當(dāng)CD⊥BC時(shí),另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)
練一練:課本例1后練習(xí)第l、2題。
問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的猜想嗎?
說明與建議:(l)教師要用微笑、點(diǎn)頭、贊嘆、激勵(lì)的表情和話語來鼓勵(lì)學(xué)生大膽猜想。(2)學(xué)生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對(duì)稱圖形等等。教師要引導(dǎo)學(xué)生關(guān)注等腰梯形特有的性質(zhì)---等腰梯形的底角相等。(3)如何證明這個(gè)猜想,可讓學(xué)生自己思考、探索、交流,教師給以引導(dǎo),鼓勵(lì)證明多樣化,如課本第174頁的證法。教師可提醒學(xué)生證明過程中用到了"夾在平行線間的平行線段相等"這一性質(zhì)。并指出:這種證法的實(shí)質(zhì)是把一腰平移,從而構(gòu)造出等腰三角形;對(duì)于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構(gòu)造出兩個(gè)全等的直三角形等。
問題4:如何證明等腰梯形是軸對(duì)稱圖形呢?(說明與建議:可讓學(xué)生用折紙的方法,確認(rèn)等腰梯形是軸對(duì)稱圖形;教學(xué)中,還可引導(dǎo)學(xué)生借助等腰三角形的軸對(duì)稱性加以證明,如圖4.9-3,延長(zhǎng)等腰梯形兩腰BA、CD相交于點(diǎn)E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個(gè)等腰三角形EAD、EBC的對(duì)稱軸。由軸對(duì)稱圖形可知,也是等腰梯形ABCD的對(duì)稱軸。因此,等腰梯形是軸對(duì)稱圖形,有一條對(duì)稱軸,是過兩底中點(diǎn)的直線。)
例題解析(課本例1)說明:本例的結(jié)論,為學(xué)生在討論"問題3"時(shí)已提及,則可由學(xué)生自已完成證明,并概括成為一個(gè)文字命題。如學(xué)生討論問題3時(shí)未提及,則可由教師引導(dǎo)學(xué)生猜想,然后再完成證明。
課堂練習(xí)1.課本例1后練習(xí)第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長(zhǎng)為5cm,上、下底長(zhǎng)分別是6cm和12cm,求梯形的面積。(方法一,過點(diǎn)C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點(diǎn)C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)
初二數(shù)學(xué)教案2
知識(shí)與技能
1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運(yùn)算。
2.會(huì)用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡(jiǎn)單的實(shí)際問題。
3.體驗(yàn)勾股定理的探索過程,會(huì)運(yùn)用勾股定理解決簡(jiǎn)單問題。會(huì)運(yùn)用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明和計(jì)算。
5.進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,會(huì)計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會(huì)用它們表示數(shù)據(jù)的波動(dòng)情況。
過程與方法
進(jìn)一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的.表達(dá)能力;解決一些實(shí)際問題,體會(huì)化歸思想和函數(shù)的變化與對(duì)應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實(shí)事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動(dòng)中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。
情感、態(tài)度與價(jià)值觀
豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)和體驗(yàn),通過對(duì)問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對(duì)教學(xué)活動(dòng)中的困難,能通過合作交流解決遇到的困難。
初二數(shù)學(xué)教案3
教學(xué)目標(biāo)
1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計(jì)量的直方圖;
2、讓學(xué)生進(jìn)一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;
教學(xué)重點(diǎn)
掌握頻率分布直方圖概念及其應(yīng)用;
教學(xué)難點(diǎn)
繪制連續(xù)統(tǒng)計(jì)量的直方圖
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境,引入新課:
問題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個(gè)想法可以實(shí)現(xiàn)嗎?應(yīng)該選擇身高在哪個(gè)范圍的學(xué)生參加?
63名學(xué)生的身高數(shù)據(jù)如下:
158158160168159159151158159
168158154158154169158158158
159167170153160160159159160
149163163162172161153156162
162163157162162161157157164
155156165166156154166164165
156157153165159157155164156
解:(確定組距)最大值為172,最小值為149,他們的差為23
(身高x的變化范圍在23厘米,)
。ǚ纸M劃記)頻數(shù)分布表:
身高(x)劃記頻數(shù)(學(xué)生人數(shù))
149≤x<1522
152≤x<1556
155≤x<15812
158≤x<16119
161≤<16410
164≤x<1678
167≤x<1704
170≤x<1732
從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的`學(xué)生中選隊(duì)員
(繪制頻數(shù)分布直方圖如課本P72圖12.2-3)
探究:上面對(duì)數(shù)據(jù)分組時(shí),組距取3,把數(shù)據(jù)分成8個(gè)組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個(gè)組,這樣做能否選出身高比較整齊的隊(duì)員?
分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊(duì)員。
歸納:組距和組數(shù)的確定沒有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗(yàn)和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個(gè)以內(nèi)時(shí),根據(jù)數(shù)據(jù)的多少通常分為5~12個(gè)組。
我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。
首先取直方圖中每一個(gè)長(zhǎng)方形上邊的中草藥點(diǎn),然后在橫軸上取兩個(gè)頻數(shù)為0的點(diǎn),在上方圖的左邊。147、5,0),在直方圖的右邊取點(diǎn)(174、5,0),將這些點(diǎn)用線段依次連接起來,就得到頻數(shù)折線圖。
頻數(shù)折線圖也可以不通過直方圖直接畫出。
根據(jù)表12.2-2,求了各個(gè)小組兩個(gè)端點(diǎn)的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對(duì)應(yīng)的頻數(shù)為縱坐標(biāo)描點(diǎn),另外再在橫軸上取兩個(gè)點(diǎn),依次連接這些點(diǎn),就得到頻數(shù)分布折線圖如課本P73圖。
II課堂小結(jié):
。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖
(2)組距和組數(shù)沒有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個(gè)以內(nèi)時(shí),通常分成5~12組
(3)如果取個(gè)長(zhǎng)方形上邊的中點(diǎn),可以得到頻數(shù)折線圖
(4)求各小組兩個(gè)斷點(diǎn)的平均數(shù),這些平均數(shù)叫組中值。
初二數(shù)學(xué)教案4
一、利用勾股定理進(jìn)行計(jì)算
1.求面積
例1:如圖1,在等腰△ABC中,腰長(zhǎng)AB=10cm,底BC=16cm,試求這個(gè)三角形面積。
析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為×BC×AD=×16×6=48cm2。
2.求邊長(zhǎng)
例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長(zhǎng)。
析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長(zhǎng)線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)椤螦CB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點(diǎn)評(píng):這兩道題有一個(gè)共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊(yùn)含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請(qǐng)同學(xué)們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長(zhǎng),且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關(guān)于a,b,c的一個(gè)等式,要判斷△ABC的.形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點(diǎn)評(píng):用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。
三、利用勾股定理說明線段平方和、差之間的關(guān)系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。
析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因?yàn)椤螩=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
點(diǎn)評(píng):若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時(shí),則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。
初二數(shù)學(xué)教案5
一、教學(xué)目標(biāo)
1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.
2.掌握矩形的性質(zhì)定理.
3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力.
4.通過性質(zhì)的學(xué)習(xí),體會(huì)矩形的應(yīng)用美.
二、教法設(shè)計(jì)
觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.
三、重點(diǎn)、難點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):矩形的性質(zhì)及其推論.
2.教學(xué)難點(diǎn):矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
教具(一個(gè)活動(dòng)的平行四邊形),投影儀及膠片,常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證
七、教學(xué)步驟
【復(fù)習(xí)提問】
什么叫平行四邊形?它和四邊形有什么區(qū)別?
【引入新課】
我們已經(jīng)知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對(duì)于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).
【講解新課】
制一個(gè)活動(dòng)的平行四邊形教具,堂上進(jìn)行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個(gè)角是直角時(shí),指出這時(shí)平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個(gè)角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).
矩形的性質(zhì):
既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時(shí)矩形又是特殊的平行四邊形,比平行四邊形多了一個(gè)角是直角的條件,因而它就增加了一些特殊性質(zhì).
繼續(xù)演示教具,當(dāng)它變成矩形時(shí),學(xué)生容易看到它的四個(gè)角都是直角;它的對(duì)角線也相等(寫出這兩個(gè)結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.
矩形性質(zhì)定理1:矩形的四個(gè)角都是直角.
矩形性質(zhì)定理2:矩形對(duì)角線相等.
由矩形性質(zhì)定理2我們可以得到
推論:直角三角形斜邊上的'中線等于斜邊的一半.
(這實(shí)際上是 △的一個(gè)重要性質(zhì),即 △斜邊中點(diǎn)到三頂點(diǎn)的距離相等,它在求線段長(zhǎng)或線段部分關(guān)系時(shí)經(jīng)常用到)
例1 已知如圖1 矩形 的兩條對(duì)角線相交于點(diǎn), , ,求矩形對(duì)角線的長(zhǎng).(按教材的格式)
(強(qiáng)調(diào)這種計(jì)算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進(jìn)行代數(shù)計(jì)算)
【總結(jié)、擴(kuò)展】
1.小結(jié):(用投影打出)
(1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.
(2)矩形性質(zhì).
1.具有平行四邊形的所有性質(zhì).
2.特有性質(zhì):四個(gè)角都是直角,對(duì)角線相等.
3.思考題:已知如圖, 是矩形 對(duì)角線交點(diǎn), 平分 , ,求 的度數(shù)
八、布置作業(yè)
教材P158中2、5,P195中7.
九、板書設(shè)計(jì)
十、隨堂練習(xí)
教材P146中1、2、3、4
初二數(shù)學(xué)教案6
教學(xué)建議
知識(shí)結(jié)構(gòu):
重點(diǎn)難點(diǎn)分析:
是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算,利用分母有理化化簡(jiǎn).商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡(jiǎn)和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡(jiǎn)與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡(jiǎn)二次根式化簡(jiǎn)的掌握.
教學(xué)難點(diǎn)是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號(hào).由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式.
教法建議:
1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對(duì)比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向.
2. 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡(jiǎn)較簡(jiǎn)單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時(shí)討論二次根式的除法法則,并運(yùn)用這一法則進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號(hào)出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.
3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵(lì)學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算;
2.會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡(jiǎn)及近似計(jì)算問題;
4. 培養(yǎng)學(xué)生利用二次根式的除法公式進(jìn)行化簡(jiǎn)與計(jì)算的能力;
5. 通過二次根式公式的引入過程,滲透從特殊到一般的`歸納方法,提高學(xué)生的歸納總結(jié)能力;
6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡(jiǎn)潔性.
二、教學(xué)重點(diǎn)和難點(diǎn)
1.重點(diǎn):會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn),會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進(jìn)行.
2.難點(diǎn):二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進(jìn)行總結(jié)對(duì)比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一) 引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:
類似地,每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有 (a0,b0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個(gè)式子成立的條件是什么?a0,b0,對(duì)于為什么b0,要使學(xué)生通過討論明確,因?yàn)閎=0時(shí)分母為0,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,等號(hào)左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號(hào)右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個(gè)算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn)與運(yùn)算.
例1 化簡(jiǎn):
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),在運(yùn)算時(shí),一般先化成假分?jǐn)?shù);本節(jié)根號(hào)下的字母均為正數(shù).
例2 化簡(jiǎn):
(1) ; (2) ;
解:(1)
(2)
讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡(jiǎn),只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.
學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進(jìn)行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).
(四)練習(xí)
1.化簡(jiǎn):
(1) ; (2) ; (3) .
2.化簡(jiǎn):
(1) ; (2) ; (3)
六、作業(yè)
教材P.183習(xí)題11.3;A組1.
七、板書設(shè)計(jì)
初二數(shù)學(xué)教案7
教學(xué)目標(biāo)
1、知識(shí)與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系。
2、過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用。
3、情感、態(tài)度與價(jià)值觀
在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值。
重、難點(diǎn)與關(guān)鍵
1、重點(diǎn):了解因式分解的意義,感受其作用。
2、難點(diǎn):整式乘法與因式分解之間的關(guān)系。
3、關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解。
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法。
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
【問題牽引】
請(qǐng)同學(xué)們探究下面的2個(gè)問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ā?/p>
問題2:當(dāng)a=102,b=98時(shí),求a2—b2的值。
二、豐富聯(lián)想,展示思維
探索:你會(huì)做下面的`填空嗎?
1、ma+mb+mc=()();
2、x2—4=()();
3、x2—2xy+y2=()2。
【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式。
三、小組活動(dòng),共同探究
【問題牽引】
。1)下列各式從左到右的變形是否為因式分解:
、伲▁+1)(x—1)=x2—1;
、赼2—1+b2=(a+1)(a—1)+b2;
、7x—7=7(x—1)。
。2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立。
、9x2(______)+y2=(3x+y)(_______);
、趚2—4xy+(_______)=(x—_______)2。
四、隨堂練習(xí),鞏固深化
課本練習(xí)。
【探研時(shí)空】計(jì)算:993—99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/p>
由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:
1、什么叫因式分解?
2、因式分解與整式運(yùn)算有何區(qū)別?
六、布置作業(yè),專題突破
選用補(bǔ)充作業(yè)。
板書設(shè)計(jì)
初二數(shù)學(xué)教案8
新課指南
1.知識(shí)與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項(xiàng)及合并同類項(xiàng)法則和去括號(hào)法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.
2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會(huì)列簡(jiǎn)單的代數(shù)式.在具體情境中體會(huì)同類項(xiàng)的意義及合并同類項(xiàng)、去括號(hào)法則的必要性,總結(jié)合并同類項(xiàng)及去括號(hào)的法則,并利用它們進(jìn)行整式的加減運(yùn)算和解決簡(jiǎn)單的實(shí)際問題.
3.情感態(tài)度與價(jià)值觀:通過對(duì)整式加減的學(xué)習(xí),深入體會(huì)代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識(shí)打下良好的基礎(chǔ),同時(shí),也使我們體會(huì)到數(shù)學(xué)知識(shí)的產(chǎn)生來源于實(shí)際生產(chǎn)和生活的.需求,反之,它又服務(wù)于實(shí)際生活的方方面面.
4.重點(diǎn)與難點(diǎn):重點(diǎn)是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項(xiàng)的法則和去括號(hào)的法則.難點(diǎn)是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識(shí)別整式的項(xiàng)、系數(shù)等知識(shí).
教材解讀精華要義
數(shù)學(xué)與生活
如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長(zhǎng)方形地面,在第n個(gè)圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當(dāng)n=1時(shí),一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時(shí),一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時(shí),一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個(gè)圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?
知識(shí)詳解
知識(shí)點(diǎn)1代數(shù)式
用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識(shí)點(diǎn)2列代數(shù)式時(shí)應(yīng)該注意的問題
(1)數(shù)與字母、字母與字母相乘時(shí)常省略“×”號(hào)或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數(shù)字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分?jǐn)?shù)與字母相乘時(shí)要化成假分?jǐn)?shù).
如:2×ab=ab,切勿錯(cuò)誤寫成“2ab”.
(4)除法常寫成分?jǐn)?shù)的形式.
如:S÷x=.
初二數(shù)學(xué)教案9
通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的.形式表示;
(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的多項(xiàng)式 的次數(shù);
(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。
活動(dòng)5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
活動(dòng)6:課堂練習(xí)
1.P167練習(xí);
2. 看誰連得準(zhǔn)
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。
活動(dòng)7:課堂小結(jié)
從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。
活動(dòng)8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。
板書設(shè)計(jì)(需要一直留在黑板上主板書)
15.4.1提公因式法 例題
1.因式分解的定義
2.提公因式法
初二數(shù)學(xué)教案10
初二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對(duì)等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條)。
5、等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻(gè)內(nèi)角都相等,都等于60°
、鄣冗吶切蚊織l邊上都存在三線合一.
、艿冗吶切问禽S對(duì)稱圖形,對(duì)稱軸是三線合一(3條).
6.基本判定:
、诺妊切蔚腵判定:
、儆袃蓷l邊相等的三角形是等腰三角形.
、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊).
、频冗吶切蔚呐卸ǎ
、偃龡l邊都相等的三角形是等邊三角形.
、谌齻(gè)角都相等的三角形是等邊三角形.
、塾幸粋(gè)角是60°的等腰三角形是等邊三角形.
初二數(shù)學(xué)教案11
一、學(xué)生情況分析及改進(jìn)提高措施:
學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡(jiǎn)單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會(huì)了獨(dú)立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會(huì)了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識(shí)和基本技能打得也比較扎實(shí),對(duì)數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動(dòng)中去,特別是對(duì)一些動(dòng)手操作,合作學(xué)習(xí),實(shí)踐活動(dòng)等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計(jì)一些活動(dòng),引導(dǎo)學(xué)生進(jìn)行獨(dú)立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動(dòng)的經(jīng)驗(yàn)。
在數(shù)學(xué)知識(shí)上已經(jīng)掌握了兩步計(jì)算式題和有余數(shù)的除法,還有統(tǒng)計(jì)知識(shí),并學(xué)會(huì)了辨認(rèn)八個(gè)方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長(zhǎng)度單位毫米、厘米、分米、米和千米的實(shí)際長(zhǎng)度和簡(jiǎn)單的換算以及實(shí)際測(cè)量,并能用以上這些相應(yīng)的知識(shí)解決實(shí)際生活中的問題。總之,這些技能和知識(shí)點(diǎn)都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識(shí)打下了堅(jiān)實(shí)的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對(duì)數(shù)學(xué)的感悟能力會(huì)在本學(xué)期進(jìn)一步得到發(fā)揚(yáng)光大,他們的情感、態(tài)度、價(jià)值觀會(huì)沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學(xué)生的年齡特點(diǎn)出發(fā),多采用情境活動(dòng)式教學(xué),培養(yǎng)學(xué)生的參與意識(shí)。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動(dòng)中去,絕大部分學(xué)生能夠在課堂上主動(dòng)的研究問題,獲取知識(shí)。
2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實(shí)際,便于對(duì)問題的理解。結(jié)合學(xué)生的生活實(shí)際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。
3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實(shí)踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實(shí)踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長(zhǎng),并做記錄,再將每天的記錄制作成統(tǒng)計(jì)圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長(zhǎng)度單位,讓他們從成語詞典上收集有關(guān)長(zhǎng)度單位的成語,通過對(duì)詞語的理解把握其表示的長(zhǎng)度。
4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時(shí)學(xué)習(xí)情況,與學(xué)生家長(zhǎng)多溝通交流。
二、本冊(cè)教材分析
本冊(cè)教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動(dòng)實(shí)踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動(dòng)有趣的`情境,引導(dǎo)學(xué)生在解決現(xiàn)實(shí)問題的過程中獲得對(duì)數(shù)學(xué)知識(shí)的理解和體驗(yàn)。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長(zhǎng);(6)年、月、日;(7)可能性;(8)共有五個(gè)社會(huì)實(shí)踐活動(dòng),還有兩個(gè)整理復(fù)習(xí),一個(gè)總復(fù)習(xí)。具體特點(diǎn)是:
1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動(dòng)手操作與抽象概括相結(jié)合,體驗(yàn)乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號(hào)感。
2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗(yàn)出發(fā),注重通過操作活動(dòng)發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計(jì)。
三、總體教學(xué)目標(biāo):
(一)、知識(shí)與技能
1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動(dòng),經(jīng)歷從具體情境中抽象出乘法除法算式,體會(huì)乘法與除法的意義。
2.學(xué)平面圖形的周長(zhǎng),會(huì)進(jìn)行周長(zhǎng)的計(jì)算。
(二)、實(shí)踐能力培養(yǎng)
1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗(yàn)從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認(rèn)識(shí)質(zhì)量單位。
3.經(jīng)歷對(duì)生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對(duì)生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度
1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動(dòng)中,能夠感受到思考的條理性和合理性。
2、教師重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評(píng)價(jià),讓他們?cè)诟惺艿綐啡ぶ,?yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
教研專題:
創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識(shí)。
個(gè)人專題:
在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識(shí),提高課堂的有效性。
初二數(shù)學(xué)教案12
一、班級(jí)情況分析:
本學(xué)期一(1)班有學(xué)生40人,新轉(zhuǎn)學(xué)來一名女生。上學(xué)期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學(xué)生成績(jī)?cè)谀昙?jí)排名第一,能過鎮(zhèn)中線,但是學(xué)生未能發(fā)揮出真實(shí)水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。
一(7)班有學(xué)生38人,上學(xué)期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學(xué)生不多不夠拔尖,成績(jī)中層的學(xué)生占據(jù)大部分。學(xué)生好動(dòng),對(duì)數(shù)學(xué)學(xué)習(xí)的積極性普遍不夠高,學(xué)生好動(dòng),課堂氣氛較活躍。學(xué)生數(shù)學(xué)基礎(chǔ)不扎實(shí)。提升空間較大。
兩班的整體成績(jī)均不夠理想。
二、教材分析:
本套教材切合《標(biāo)準(zhǔn)》的課程目標(biāo),有以下特點(diǎn):
1.為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn),提供大量數(shù)學(xué)活動(dòng)的線索,成為供所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。
2.向?qū)W生提供現(xiàn)實(shí)、有趣、富有挑戰(zhàn)性的學(xué)習(xí)素材。所有數(shù)學(xué)知識(shí)的學(xué)習(xí),都力求從學(xué)生實(shí)際出發(fā),以他們熟悉或感興趣的問題情境引入學(xué)習(xí)主題,并展開數(shù)學(xué)探究。
3.為學(xué)生提供探索、交流的時(shí)間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學(xué)生通過自主探索與合作交流,形成新的知識(shí)。
4.展現(xiàn)數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,讓學(xué)生經(jīng)歷真正的“做數(shù)學(xué)”、“用數(shù)學(xué)”的過程。
5.滿足不同學(xué)生發(fā)展的需求。
三、教學(xué)目標(biāo)及要求:
第一章:
1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實(shí)情境中進(jìn)一步理解字母表示數(shù)的意義,發(fā)展符號(hào)感。
2.經(jīng)歷探索整式運(yùn)算法則的過程,理解整式運(yùn)算的算理,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力。
3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),會(huì)進(jìn)行簡(jiǎn)單的整式加、減、乘、除運(yùn)算。
4.會(huì)推導(dǎo)乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進(jìn)一步發(fā)展空間觀念、推理能力和有條理表達(dá)的能力。
2.在具體情境中了解補(bǔ)角、余角、對(duì)頂角,知道等角的余角相等、等角的補(bǔ)角相等、對(duì)頂角相等。會(huì)用三角尺過已知直線外一點(diǎn)畫這條直線的平行線;會(huì)用尺規(guī)作一條線段等于已知線段、作一個(gè)角等于已知角。
3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。
4.進(jìn)一步激發(fā)學(xué)生對(duì)數(shù)學(xué)方面的興趣,體驗(yàn)從數(shù)學(xué)的角度認(rèn)識(shí)現(xiàn)實(shí)。
第三章:
1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學(xué)記數(shù)法表示它們,進(jìn)一步發(fā)展數(shù)感;能借助計(jì)算器進(jìn)行有關(guān)科學(xué)記數(shù)法的計(jì)算。
2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會(huì)近似數(shù)的意義及在生活中的作用。
3.通過實(shí)例,體驗(yàn)收集、整理、描述和分析數(shù)據(jù)的過程。
4.能讀懂統(tǒng)計(jì)圖并從中獲取信息,能形象、有效地運(yùn)用統(tǒng)計(jì)圖描述數(shù)據(jù)。
第四章:
1.經(jīng)歷從實(shí)際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。
2.體會(huì)等可能性與游戲規(guī)則的公平性,抽象出概率模型,計(jì)算概率,解決實(shí)際、作出合理決策的過程,體會(huì)概率是描述不確定現(xiàn)象的數(shù)學(xué)模型。
3.能設(shè)計(jì)符合要求的簡(jiǎn)單概率模型。
第五章:
1.通過觀察、操作、想象、推理、交流等活動(dòng),發(fā)展空間觀念,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達(dá)能力。
3.進(jìn)一步認(rèn)識(shí)三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。
4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個(gè)三角形全等的條件,能應(yīng)用三角形的全等解決一些實(shí)際問題。
5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。
第六章:
1.經(jīng)歷探索具體情境中兩個(gè)變量之間的關(guān)系的過程,進(jìn)一步發(fā)展符號(hào)感和抽象思維。
2.能發(fā)現(xiàn)實(shí)際情境中的變量及其相互關(guān)系,并確定其中的自變量或因變量。
3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進(jìn)行表達(dá),發(fā)展有條理地進(jìn)行思考和表達(dá)的能力。
4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對(duì)變量之間關(guān)系的分析,嘗試對(duì)變化趨勢(shì)進(jìn)行初步的預(yù)測(cè)。
第七章:
1.在豐富的現(xiàn)實(shí)情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計(jì)等數(shù)學(xué)活動(dòng)過程,進(jìn)一步發(fā)展空間觀念。
2.通過豐富的生活實(shí)例認(rèn)識(shí)軸對(duì)稱,探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)所連的.線段被對(duì)稱軸垂直平分的性質(zhì)。
3.探索并了解基本圖形的軸對(duì)稱性及其相關(guān)性質(zhì)。
4.能夠按要求作出簡(jiǎn)單平面圖形經(jīng)過軸對(duì)稱后的圖形,探索簡(jiǎn)單圖形之間的軸對(duì)稱關(guān)系,并能指出對(duì)稱軸。
5.欣賞現(xiàn)實(shí)生活中的軸對(duì)稱圖形,能利用軸對(duì)稱進(jìn)行一些圖案設(shè)計(jì),體驗(yàn)軸對(duì)稱在現(xiàn)實(shí)生活中的廣泛應(yīng)用和豐富的文化價(jià)值。
四、教學(xué)改革的設(shè)想(教學(xué)具體措施)
充分體現(xiàn)培優(yōu)扶困的實(shí)施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實(shí)做到:
1、根據(jù)學(xué)生的個(gè)別差異。因材施教,熱情關(guān)懷,循循善誘,加強(qiáng)個(gè)別輔導(dǎo)。幫助他們?cè)鰪?qiáng)學(xué)習(xí)的信心,逐步達(dá)到教學(xué)的基本要求,盡量做好培優(yōu)輔差工作。
2、精心設(shè)計(jì)練習(xí),講究練習(xí)方式提高練習(xí)效率,對(duì)作業(yè)嚴(yán)格要求,及時(shí)檢查,認(rèn)真批改,對(duì)作業(yè)中的錯(cuò)誤及時(shí)找出原因,要求學(xué)生認(rèn)真改正,培養(yǎng)學(xué)生獨(dú)立完成作業(yè)的良好習(xí)慣。
3、認(rèn)真?zhèn)湔n,深入鉆研教材,堅(jiān)持自主學(xué)習(xí),充分發(fā)揮學(xué)生的主動(dòng)學(xué)習(xí)有積極性,了解學(xué)生裝學(xué)習(xí)數(shù)學(xué)的特點(diǎn),研究教學(xué)規(guī)律,不斷改進(jìn)教學(xué)方法。
4、堅(jiān)持學(xué)習(xí),多聽課,多模仿,虛心向有經(jīng)驗(yàn)的老師請(qǐng)教教育教學(xué)方法。努力提升自身的教學(xué)技能。
5、在教學(xué)中,加強(qiáng)學(xué)生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學(xué)活動(dòng)課,擴(kuò)大學(xué)生的視野,拓寬知識(shí)面,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展數(shù)學(xué)才能,發(fā)揮學(xué)生的主動(dòng)性,獨(dú)立性和創(chuàng)造性。
6、開展“一幫一”活動(dòng),實(shí)行以優(yōu)帶差點(diǎn)的幫助方法,多利用課余時(shí)間加強(qiáng)輔導(dǎo),從基礎(chǔ)知識(shí)補(bǔ)起,力求使學(xué)生一課一得,力求提高優(yōu)秀率和及格率。
7.課前充分備好課,在課堂教學(xué)中特別要體現(xiàn)出培扶,分層次教育。
8.重視學(xué)生學(xué)習(xí)興趣的培養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的內(nèi)驅(qū)力。
9.大膽地深度嘗試新的教學(xué)方法,要因地制宜,因材施教。
10.重視基礎(chǔ)知識(shí)過關(guān)和單元測(cè)試過關(guān)工作,及時(shí)進(jìn)行單元總結(jié),做好平時(shí)的查漏補(bǔ)缺工作,不遺漏知識(shí)盲點(diǎn)。
11.注重對(duì)作業(yè)、練習(xí)紙、練習(xí)冊(cè)、測(cè)驗(yàn)卷的及時(shí)批改,并盡量做到全批全改,及時(shí)反饋信息。
12.多用多媒體教學(xué),使數(shù)學(xué)生動(dòng)化。
13.多用實(shí)物教學(xué),使數(shù)學(xué)形象化。
14.實(shí)行課課清,日日清,周周清。
15.加強(qiáng)課堂管理,嚴(yán)把課堂質(zhì)量關(guān),提高課堂效率。
16.抓好學(xué)生的作業(yè)上交完成情況。
17.加強(qiáng)與學(xué)生的交流,做好學(xué)生的思想教育與培優(yōu)輔差工作。
五、擬定本學(xué)期教學(xué)目標(biāo)
六、擬定本學(xué)期培優(yōu)扶養(yǎng)計(jì)劃。
培扶措施
對(duì)臨界優(yōu)秀生
在理解題、思維訓(xùn)練題給予方法指導(dǎo),并要加強(qiáng)書面的表達(dá)能力。做到思路清晰,格式標(biāo)準(zhǔn);A(chǔ)訓(xùn)練題的過關(guān)檢測(cè),對(duì)每次測(cè)試的成績(jī)給予個(gè)別指導(dǎo),多用激勵(lì)教育。
對(duì)臨界及格生:
首先加強(qiáng)基礎(chǔ)知識(shí)的培訓(xùn),尤其要在選擇題、填空題多下功夫。在課堂上、課后對(duì)他們多加注意,及時(shí)糾正錯(cuò)誤。抓好每次單元過關(guān)測(cè)試工作,抓好時(shí)機(jī),多表揚(yáng),樹立信心。
七、教學(xué)內(nèi)容及課時(shí)安排(略)
八、作業(yè)格式及批改要求:
作業(yè)格式:
1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。
2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。
3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。
批改要求:
1.每題作業(yè)都要有批改的痕跡,錯(cuò)的打“×”,對(duì)的打“√”,書寫要清晰,明確看出錯(cuò)對(duì)。
2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分?jǐn)?shù)+等級(jí)(等級(jí)分A、B、C三等,代表學(xué)生的書寫成績(jī)。)
3、每次的作業(yè)要及時(shí)更正,更正時(shí)統(tǒng)一在每次的作業(yè)后面用紅筆更正。
初二數(shù)學(xué)教案13
教學(xué)目標(biāo):
知識(shí)與技能
1、掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;
2、進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、
3、會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論、
情感態(tài)度與價(jià)值觀
敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)、
教學(xué)重點(diǎn)
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論、
教學(xué)難點(diǎn)
會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論、
課前準(zhǔn)備
標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法、
這樣做得到的`是一個(gè)直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
1、如何來判斷?(用直角三角板檢驗(yàn))
這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為 , , ,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))
2、繼續(xù)嘗試:下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:
5,12,13; 6, 8, 10; 8,15,17、
。1)這三組數(shù)都滿足a2 +b2=c2嗎?
。2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?
3、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2 ,那么這個(gè)三角形是直角三角形、
滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)、
4、例1 一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?
隨堂練習(xí):
1、下列幾組數(shù)能否作為直角三角形的三邊長(zhǎng)?說說你的理由、
、9,12,15; ⑵15,36,39;
、12,35,36; ⑷12,18,22、
2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、
3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積、
4、習(xí)題1、3
課堂小結(jié):
1、直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2 ,那么這個(gè)三角形是直角三角形、
2、滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)、勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)、
初二數(shù)學(xué)教案14
課型:
復(fù)習(xí)課
學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):
1. 針對(duì)函數(shù)及其圖象一章,查漏補(bǔ)缺,答疑解惑;
2. 一次函數(shù)應(yīng)用的復(fù)習(xí).
補(bǔ)充例題:
例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系
(1)B出發(fā)時(shí)與A相距 千米;
(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí);
(3)B出發(fā)后 小時(shí)與A相遇;
(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式;
(5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn), 小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn) 千米,在圖中表示出這個(gè)相遇點(diǎn)C.
例2.在平面直角坐標(biāo)系中,過一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長(zhǎng)與面積相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如,圖中過點(diǎn)P分別作x軸, y的垂線,與坐標(biāo)軸圍成矩形OAPB的周長(zhǎng)與面積相等,則點(diǎn)P是和諧點(diǎn).
(1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說明理由;
(2)若和諧點(diǎn)P(a,3)在直線y=-x+b(b為常數(shù))上,求點(diǎn)a, b的值.
例3.在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的正方形邊線(如圖①)按一定方向運(yùn)動(dòng).圖②是P點(diǎn)運(yùn)動(dòng)的路程s(個(gè)單位)與運(yùn)動(dòng)時(shí)間 (秒)之間的函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動(dòng)的路程s之間的函數(shù)圖象的一部分.
(1)求s與t之間的函數(shù)關(guān)系式.
(2)與圖③相對(duì)應(yīng)的P點(diǎn)的運(yùn)動(dòng)路徑是: ;P點(diǎn)出發(fā) 秒首次到達(dá)點(diǎn)B;
(3)寫出當(dāng)38時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.
課后續(xù)助:
1.某市自來水公司為限制單位用水,每月只給某單位計(jì)劃內(nèi)用水3000噸,計(jì)劃內(nèi)用水每噸收費(fèi)0.5元,超計(jì)劃部分每噸按0.8元收費(fèi).
(1)寫出該單位水費(fèi)y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式
、儆盟啃∮诘扔3000噸 ;②用水量大于3000噸 .
(2)某月該單位用水3200噸,水費(fèi)是 元;若用水2800噸,水費(fèi) 元.
(3)若某月該單位繳納水費(fèi)1540元,則該單位用水多少噸?
2.某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的'通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;
(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.
3.某氣象研究中心觀測(cè)一場(chǎng)沙塵暴從發(fā)生到結(jié)束全過程, 開始時(shí)風(fēng)暴平均每小時(shí)增加2千米/時(shí),4小時(shí)后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r(shí)增加4千米/時(shí),一段時(shí)間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時(shí),其風(fēng)速平均每小時(shí)減小1千米/時(shí),最終停止。 結(jié)合風(fēng)速與時(shí)間的圖像,回答下列問題:
(1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時(shí)?
(3)求出當(dāng)x25時(shí),風(fēng)速y(千米/時(shí))與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式.
(4)若風(fēng)速達(dá)到或超過20千米/時(shí),稱為強(qiáng)沙塵暴,則強(qiáng)沙塵暴持續(xù)多長(zhǎng)時(shí)間?
初二數(shù)學(xué)教案15
教學(xué)目的
通過分析儲(chǔ)蓄中的數(shù)量關(guān)系、商品利潤(rùn)等有關(guān)知識(shí),經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):探索這些實(shí)際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點(diǎn):找出能表示整個(gè)題意的.等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲(chǔ)蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤(rùn)等有關(guān)知識(shí)。
利潤(rùn)=售價(jià)—成本; =商品利潤(rùn)率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲(chǔ)蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價(jià)值48.6元的計(jì)算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實(shí)際得到的利息是多少?扣除利息的20%,實(shí)際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折(即按標(biāo)價(jià)的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤(rùn)是怎么來的?
標(biāo)價(jià)的80%(即售價(jià))-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標(biāo)價(jià)為:(1+40%)x
每件服裝的實(shí)際售價(jià)為:(1+40%)x·80%
每件服裝的利潤(rùn)為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當(dāng)運(yùn)用方程解決實(shí)際問題時(shí),首先要弄清題意,從實(shí)際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗(yàn)解的合理性。應(yīng)用一元一次方程解決實(shí)際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
【初二數(shù)學(xué)教案】相關(guān)文章:
初二數(shù)學(xué)教案11-02
【推薦】初二數(shù)學(xué)教案12-23
初二數(shù)學(xué)教案【熱】12-24
【薦】初二數(shù)學(xué)教案12-19
初二數(shù)學(xué)教案【推薦】12-18
初二數(shù)學(xué)教案【熱門】12-22
初二數(shù)學(xué)教案【薦】12-22
【熱】初二數(shù)學(xué)教案12-23
【精】初二數(shù)學(xué)教案12-19