国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級數(shù)學(xué)教案>初二數(shù)學(xué)優(yōu)秀教案

初二數(shù)學(xué)優(yōu)秀教案

時(shí)間:2022-11-21 18:36:44 八年級數(shù)學(xué)教案 我要投稿

初二數(shù)學(xué)優(yōu)秀教案4篇

  作為一位不辭辛勞的人民教師,編寫教案是必不可少的,借助教案可以有效提升自己的教學(xué)能力。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的初二數(shù)學(xué)優(yōu)秀教案,僅供參考,歡迎大家閱讀。

初二數(shù)學(xué)優(yōu)秀教案4篇

初二數(shù)學(xué)優(yōu)秀教案1

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。

  [教學(xué)目標(biāo)]

  一、知識與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡單的'實(shí)際問題

  3學(xué)會簡單的合情推理與數(shù)學(xué)說理

  二、過程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。

  三、情感與態(tài)度目標(biāo)

  通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

  四、重點(diǎn)與難點(diǎn)

  1、探索和證明勾股定理

  2熟練運(yùn)用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時(shí)的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度、夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤、得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”

  2、教師展示圖片并介紹第二情景

  畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法

  第一種方法:邊長為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因?yàn)檫呴L為的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

  第二種方法:邊長為的正方形可以看作是由4個(gè)直角邊分別為、,斜邊為的

  角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為的正方形“小洞”。

  因?yàn)檫呴L為的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)

  1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識的機(jī)會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

初二數(shù)學(xué)優(yōu)秀教案2

  一、創(chuàng)設(shè)情境

  1、一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?

  (一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象)、

  2、正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?

 。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線)、

  3、平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

  4、在平面直角坐標(biāo)系中,畫出函數(shù)的圖象、我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

  二、探究歸納

  1、在畫函數(shù)的圖象時(shí),通過列表,可知我們選取的點(diǎn)是(0,—1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,—1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn)、

  2、求直線y=—2x—3與x軸和y軸的交點(diǎn),并畫出這條直線、

  分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0、由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值、

  解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=—1、5,點(diǎn)(—1、5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=—3,點(diǎn)(0,—3)就是直線與y軸的交點(diǎn)、

  過點(diǎn)(—1、5,0)和(0,—3)所作的直線就是直線y=—2x—3、

  所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),、所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是、

  三、實(shí)踐應(yīng)用

  例1若直線y=—kx+b與直線y=—x平行,且與y軸交點(diǎn)的縱坐標(biāo)為—2;求直線的.表達(dá)式、

  分析直線y=—kx+b與直線y=—x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為—2,可求出b的值、

  解因?yàn)橹本y=—kx+b與直線y=—x平行,所以k=—1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為—2,所以b=—2,因此所求的直線的表達(dá)式為y=—x—2、

  例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積、

  分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

初二數(shù)學(xué)優(yōu)秀教案3

  一、教學(xué)目標(biāo):

  1、知識目標(biāo):能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;

  2、能力目標(biāo):

 、僭趯(shí)踐操作過程中,逐步探索圖形之間的平移關(guān)系;

  ②對組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;

  3、情感目標(biāo):經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對圖形欣賞的意識。

  二、重點(diǎn)與難點(diǎn):

  重點(diǎn):圖形連續(xù)變化的特點(diǎn);

  難點(diǎn):圖形的劃分。

  三、教學(xué)方法:

  講練結(jié)合。使用多媒體課件輔助教學(xué)。

  四、教具準(zhǔn)備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學(xué)設(shè)計(jì):

  教師活動

  學(xué)生活動

  設(shè)計(jì)意圖

  創(chuàng)設(shè)情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

 。1)這個(gè)圖案有什么特點(diǎn)?

 。2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?

 。3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對每種答案都要肯定。

  看磁性黑板,展示教材64頁圖3—9,提問:左圖是一個(gè)正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?

  展示教材64頁3—10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的.?

  小組討論,派代表到臺上給大家講解。

  氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的想象力。

 。ㄑ菔菊n件)教材65頁圖3—11,提問:這個(gè)圖可以看做是什么“基本圖案”通過平移得到的?

  暢所欲言,互相補(bǔ)充。

  課堂小結(jié):

  在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。

  課堂練習(xí):

  (演示課件)教材65頁“隨堂練習(xí)”。

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對于每種答案,教師都要給予充分的肯定。

  六、教學(xué)反思:

  本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。

初二數(shù)學(xué)優(yōu)秀教案4

  一、教學(xué)目標(biāo):

  1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對稱圖形的有關(guān)概念和基本性質(zhì)的過程,積累一定的審美體驗(yàn)。

  2了解中心對稱圖形及其基本性質(zhì),掌握平行四邊形也是中心對稱圖形。

  二、教學(xué)重、難點(diǎn):

  理解中心對稱圖形的概念及其基本性質(zhì)。

  三、教學(xué)過程:

  (一)創(chuàng)設(shè)問題情境

  1.以魔術(shù)創(chuàng)設(shè)問題情境:教師通過撲克牌魔術(shù)的演示引出研究課題,激發(fā)學(xué)生探索“中心對稱圖形”的興趣。

  【魔術(shù)設(shè)計(jì)】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數(shù)指向整理好(如上圖),然后請一位同學(xué)上臺任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請這位同學(xué)洗幾下,展開撲克牌,馬上確定這位同學(xué)抽出的撲克。

  (課堂反應(yīng):學(xué)生非常安靜,目不轉(zhuǎn)睛地盯著老師做動作。每完成一個(gè)動作之后,學(xué)生就進(jìn)入沉思狀態(tài),接著就是小聲議論。)

  師重復(fù)以上活動

  2次后提問:

  (1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點(diǎn)?

  (2)你能說明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)

  (反思:創(chuàng)設(shè)問題情境主要在于下面幾點(diǎn)理由:(1)采取從學(xué)生最熟悉的實(shí)際問題情境入手的方式,貼近學(xué)生的生活實(shí)際,讓學(xué)生認(rèn)識到數(shù)學(xué)來源于生活,又服務(wù)于生活,進(jìn)一步感悟到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,從而激發(fā)學(xué)生的求知欲。

  (2)所有新知識的學(xué)習(xí)都以對相關(guān)具體問題情境的探索作為開始,它們是學(xué)生了解與學(xué)習(xí)這些新知識的有效方法,同時(shí)也活躍了課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣。(

  3)通過撲克魔術(shù)創(chuàng)設(shè)問題情境,學(xué)生獲得的答案將是豐富的。在最后交流歸納時(shí),他們感覺到,自己在活動中“研究”的成果,對最終形成規(guī)范、正確的結(jié)論是有貢獻(xiàn)的`,從而激發(fā)他們更加注意學(xué)習(xí)方式和“研究”方式。這也是對他們從事科學(xué)研究的情感態(tài)度的培養(yǎng)。學(xué)生勤于動手、樂于探究,發(fā)展學(xué)生實(shí)踐應(yīng)用能力和創(chuàng)新精神成為可行。)

  2.教師揭示謎底。

  利用“Z+Z”課件游戲演示牌面,請學(xué)生找一找哪張牌旋轉(zhuǎn)

  180O后和原來牌面一樣。

  3.學(xué)生通過動手分析上述撲克牌牌面、獨(dú)立思考、探究、合作交流等活動,得到答案:

  (1)只有一張撲克牌圖案顛倒后和原來牌面一樣。

  (2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。

  (反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問題的具體背景下,通過學(xué)生自己的觀察、發(fā)現(xiàn)、總結(jié)、歸納,進(jìn)一步理解中心對稱圖形及其特點(diǎn),發(fā)展空間觀念,突出了數(shù)學(xué)課堂教學(xué)中的探索性。從而培養(yǎng)了學(xué)生觀察、概括能力,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花。)

  (二)學(xué)生分組討論、思考探究:

  1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來一樣?

  生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機(jī)的雙葉螺旋槳等。

  2.你能將下列各圖分別繞其上的一點(diǎn)旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學(xué)生思考,允許有困難的學(xué)生利用 “

  Z+Z”演示其旋轉(zhuǎn)過程。)3

  .有人用“中心對稱圖形”一詞描述上面的這些現(xiàn)象,你認(rèn)為這個(gè)詞是什么含義?

  (對于抽象的概念教學(xué),要關(guān)注概念的實(shí)際背景與形成過程,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,力求讓學(xué)生采取發(fā)現(xiàn)式的學(xué)習(xí)方式,通過“想一想”、“議一議”、 “動一動”等多種活動形式,幫助學(xué)生克服記憶概念的學(xué)習(xí)方式。)

  (三)教師明晰,建立模型

  1給出“中心對稱圖形”定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)叫做它的對稱中心。

  2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)

  軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個(gè)對稱中心——點(diǎn)沿對稱軸對折繞對稱中心旋轉(zhuǎn)1880O對折后與原圖形重合

  旋轉(zhuǎn)后與原圖形重合

  (四)解釋、應(yīng)用與拓廣

  1.教師用“Z+Z

  智能教育平臺”演示旋轉(zhuǎn)過程,驗(yàn)證上述圖形的中心對稱性,引導(dǎo)學(xué)生討論、探究中心對稱圖形的性質(zhì)。

  (利用計(jì)算機(jī)《Z+Z智能教育平臺》技術(shù),通過圖形旋轉(zhuǎn)給出中心對稱圖形的一個(gè)幾何解釋,目的是使學(xué)生對中心對稱圖形有一個(gè)更直觀的認(rèn)識。)

  2.探究中心對稱圖形的性質(zhì)

  板書:中心對稱圖形上的每一對對應(yīng)點(diǎn)所連成的線段都被對稱中心平分。

  3.師問:怎樣找出一個(gè)中心對稱圖形的對稱中心?

  (兩組對應(yīng)點(diǎn)連結(jié)所成線段的交點(diǎn))

  4平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗(yàn)證呢?

  學(xué)生分組討論交流并回答。

  討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?學(xué)生分組討論交流并回答。

  討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?

  5逆向問題:如果一個(gè)四邊形是中心對稱圖形,那么這個(gè)四邊形一定是平行四邊形嗎?

  學(xué)生討論回答。

  6你還能找出哪些多邊形是中心對稱圖形?

  (反思:合作學(xué)習(xí)是新課程改革中追求的一種學(xué)習(xí)方法,但合作學(xué)習(xí)必須建立在學(xué)生的獨(dú)立探索的基礎(chǔ)上,否則合作學(xué)習(xí)將會流于形式,不能起到應(yīng)有的效果,所于我在上課時(shí)強(qiáng)調(diào)學(xué)生先獨(dú)立思考,再由當(dāng)天的小組長組織進(jìn)行,并由當(dāng)天的記錄員記錄小組成員的活動情況(每個(gè)小組有一張課堂合作學(xué)習(xí)參考表,見附錄)。)

  (五)拓展與延伸

  1中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個(gè)嗎?

  2.正六邊形的對稱中心怎樣確定?

  (六)魔術(shù)表演:

  1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過嗎?

  2.學(xué)生小組活動:

  以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計(jì)魔術(shù),相互之間做游戲。

  (新教材的編寫,著重突出了用數(shù)學(xué)活動呈現(xiàn)教學(xué)內(nèi)容,而不是以例題和習(xí)題的形式出現(xiàn)。通過多種形式的實(shí)踐活動,讓學(xué)生親歷探究與現(xiàn)實(shí)生活聯(lián)系密切的學(xué)習(xí)過程,使學(xué)生在合作中學(xué)習(xí),在競爭收獲,共同分享成功的喜悅,同時(shí)能調(diào)節(jié)課堂的氣氛,培養(yǎng)學(xué)生之間的情感。只有這樣,學(xué)生的創(chuàng)新意識和動手意識才會充分地發(fā)揮出來。)

  四、案例小結(jié)

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“實(shí)踐活動是培養(yǎng)學(xué)生進(jìn)行主動探索與合作交流的重要途徑!薄敖處煈(yīng)該充分利用學(xué)生已有的生活經(jīng)驗(yàn),隨時(shí)引導(dǎo)學(xué)生把所學(xué)的數(shù)學(xué)知識應(yīng)用到生活中去,解決身邊的數(shù)學(xué)問題,了解數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,體會學(xué)習(xí)數(shù)學(xué)的重要性!边@兩段話,正體現(xiàn)了新教材的重要變化——關(guān)注學(xué)生的生活世界,學(xué)習(xí)內(nèi)容更加貼近實(shí)際,同時(shí)強(qiáng)調(diào)了數(shù)學(xué)教學(xué)讓學(xué)生動手實(shí)踐的重要意義和作用。

  現(xiàn)實(shí)性的生活內(nèi)容,能夠賦予數(shù)學(xué)足夠的活力和靈性。對許多學(xué)生來說,“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實(shí)性,即回歸生活(玩撲克牌)——讓學(xué)生感知學(xué)習(xí)數(shù)學(xué)可以讓生活增添許多樂趣,同時(shí)也讓學(xué)生感知到數(shù)學(xué)就在我們身邊,學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)當(dāng)是生活中的數(shù)學(xué),是學(xué)生“自己身邊的數(shù)學(xué)”。這樣,數(shù)學(xué)來源于生活,又必須回歸于生活,學(xué)生就能在游戲中學(xué)得輕松愉快,整個(gè)課堂顯得生動活潑。

【初二數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:

初二數(shù)學(xué)優(yōu)秀教案11-21

初二數(shù)學(xué)優(yōu)秀教案2篇11-24

數(shù)學(xué)初二教案11-24

最新數(shù)學(xué)初二教案09-28

初二數(shù)學(xué)教案11-02

數(shù)學(xué)優(yōu)秀教案01-19

初二數(shù)學(xué)上冊教案11-14

數(shù)學(xué)初二教案15篇11-25

《矩形》初二的數(shù)學(xué)教案12-02