国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

八年級數(shù)學(xué)教案

時(shí)間:2022-11-14 09:17:22 八年級數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)教案集錦15篇

  作為一名人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。我們應(yīng)該怎么寫教案呢?下面是小編整理的八年級數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

八年級數(shù)學(xué)教案集錦15篇

八年級數(shù)學(xué)教案1

  平方差公式

  學(xué)習(xí)目標(biāo):

  1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;

  2、能用平方差公式進(jìn)行熟練地計(jì)算;

  3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會特殊一般特殊的認(rèn)識規(guī)律.

  學(xué)習(xí)重難點(diǎn):

  重點(diǎn):能用平方差公式進(jìn)行熟練地計(jì)算;

  難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.

  學(xué)習(xí)過程:

  一、自主探索

  1、計(jì)算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

  (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

  2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).

  3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?

  4、平方差公式的特征:

  (1)、公式左邊的兩個因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差;蛘哒f兩 個二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號不同。

  (2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。

  二 、試一試

  例1、利用平方差公式計(jì)算

  (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

  例2、利用平方差公式計(jì)算

  (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

  三、合作交流

  如圖,邊長為a的大正方形中有一個邊長為b的小正方形.

  (1)請表示圖中陰影部分的面積.

  (2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎? a a b

  (3)比較(1)(2)的結(jié)果,你能驗(yàn)證平方差公式嗎?

  四、鞏固練習(xí)

  1、利用平方差公式計(jì)算

  (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

  (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

  2、利用平方差公式計(jì)算

  (1)803797 (2)398402

  3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

  A.只能是數(shù) B.只能是單項(xiàng)式 C.只能是多項(xiàng)式 D.以上都可以

  4.下列多項(xiàng)式的`乘法中,可以用平方差公式計(jì)算的是( )

  A.(a+b)(b+a) B.(-a+b)(a-b)

  C.( a+b)(b- a) D.(a2-b)(b2+a)

  5.下列計(jì)算中,錯誤的有( )

 、(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

  ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

  A.1個 B.2個 C.3個 D.4個[來源:中.考.資.源.網(wǎng)WWW.ZK5U.COM]

  6.若x2-y2=30,且x-y=-5,則x+y的值是( )

  A.5 B.6 C.-6 D.-5

  7.(-2x+y)(-2x-y)=______.

  8.(-3x2+2y2)(______)=9x4-4y4.

  9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

  10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.

  11.利用平方差公式計(jì)算:20 19 .

  12.計(jì)算:(a+2)(a2+4)(a4+16)(a-2).

  五、學(xué)習(xí)反思

  我的收獲:

  我的疑惑:

  六、當(dāng)堂測試

  1、下列多項(xiàng)式乘法中能用平方差公式計(jì)算的是( ).

  (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

  2、填空:(1)(x2-2)(x2+2)=

  (2)(5x-3y)( )=25x2-9y2

  3、計(jì)算:

  (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

  4.利用平方差公式計(jì)算

 、1003997 ②14 15

  七、課外拓展

  下列各式哪些能用平方差公式計(jì)算?怎樣用?

  1) (a-b+c)(a-b-c)

  2) (a+2b-3)(a-2b+3)

  3) (2x+y-z+5)(2x-y+z+5)

  4) (a-b+c-d)(-a-b-c-d)

  2.2完全平方公式(1)

八年級數(shù)學(xué)教案2

  一.教學(xué)目標(biāo):

  1.了解方差的定義和計(jì)算公式。

  2.理解方差概念的產(chǎn)生和形成的過程。

  3.會用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動大小。

  二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

  1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。

  2.難點(diǎn):理解方差公式

  3.難點(diǎn)的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯誤,為突破這一難點(diǎn),我安排了幾個環(huán)節(jié),將難點(diǎn)化解。

  (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

  (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

  (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計(jì)量。

  三.例習(xí)題的意圖分析:

  1.教材P125的討論問題的意圖:

  (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

  (2).為引入方差概念和方差計(jì)算公式作鋪墊。

  (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

  (4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

  2.教材P154例1的設(shè)計(jì)意圖:

  (1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對方差公式的掌握。

  (2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。

  四.課堂引入:

  除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。

  五.例題的分析:

  教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):

  1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

  2.在求方差之前先要求哪個統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄担@個問題可以使學(xué)生明確利用方差計(jì)算步驟。

  3.方差怎樣去體現(xiàn)波動大小?

  這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

  六.隨堂練習(xí):

  1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  問:(1)哪種農(nóng)作物的.苗長的比較高?

  (2)哪種農(nóng)作物的苗長得比較整齊?

  2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?

  測試次數(shù)1 2 3 4 5

  段巍13 14 13 12 13

  金志強(qiáng)10 13 16 14 12

  參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

  2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。

  七.課后練習(xí):

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

  2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

  3.甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計(jì)算出兩個樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺機(jī)床的性能較好?

  4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  選擇小兵參加比賽。

八年級數(shù)學(xué)教案3

  一、學(xué)習(xí)目標(biāo)

  1.經(jīng)歷探索平方差公式的過程。

  2.會推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡單的.運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用;

  難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

  三、合作學(xué)習(xí)

  你能用簡便方法計(jì)算下列各題嗎?

  (1)20xx×1999

  (2)998×1002

  導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.

  (1)(x+1)(x—1);

  (2)(m+2)(m—2)

  (3)(2x+1)(2x—1);

  (4)(x+5y)(x—5y)。

  結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精講精練

  例1:運(yùn)用平方差公式計(jì)算:

  (1)(3x+2)(3x—2);

  (2)(b+2a)(2a—b);

  (3)(—x+2y)(—x—2y)。

  例2:計(jì)算:

  (1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  隨堂練習(xí)

  計(jì)算:

  (1)(a+b)(—b+a);

  (2)(—a—b)(a—b);

  (3)(3a+2b)(3a—2b);

  (4)(a5—b2)(a5+b2);

  (5)(a+2b+2c)(a+2b—2c);

  (6)(a—b)(a+b)(a2+b2)。

  五、小結(jié)

  (a+b)(a—b)=a2—b2

八年級數(shù)學(xué)教案4

  教學(xué)內(nèi)容

  本節(jié)課主要介紹全等三角形的概念和性質(zhì).

  教學(xué)目標(biāo)

  1.知識與技能

  領(lǐng)會全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念.

  2.過程與方法

  經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)觀察、操作、分析能力,體會全等三角形的應(yīng)用價(jià)值.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):會確定全等三角形的對應(yīng)元素.

  2.難點(diǎn):掌握找對應(yīng)邊、對應(yīng)角的方法.

  3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;(2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角.教具準(zhǔn)備

  四張大小一樣的`紙片、直尺、剪刀.

  教學(xué)方法

  采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識.教學(xué)過程

  一、動手操作,導(dǎo)入課題

  1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

  2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?

  【學(xué)生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論.

  【教師活動】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個多邊形和三角形.

  學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細(xì)心.

  【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個圖形叫做全等形,用“≌”表示.

  概念:能夠完全重合的兩個三角形叫做全等三角形.

  【教師活動】在紙版上任意剪下一個三角形,要求學(xué)生手拿一個三角形,做如下運(yùn)動:平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動前后的三角形會全等嗎?

  【學(xué)生活動】動手操作,實(shí)踐感知,得出結(jié)論:兩個三角形全等.

  【教師活動】要求學(xué)生用字母表示出每個剪下的三角形,同時(shí)互相指出每個三角形的頂點(diǎn)、三個角、三條邊、每條邊的邊角、每個角的對邊.

  【學(xué)生活動】把兩個三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?

  【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論:

  1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.

  2.這時(shí)它們的三個頂點(diǎn)、三條邊和三個內(nèi)角分別重合了.

  3.完全重合說明三條邊對應(yīng)相等,三個內(nèi)角對應(yīng)相等,?對應(yīng)頂點(diǎn)在相對應(yīng)的位置.

八年級數(shù)學(xué)教案5

  第11章平面直角坐標(biāo)系

  11。1平面上點(diǎn)的坐標(biāo)

  第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)

  教學(xué)目標(biāo)

  【知識與技能】

  1。知道有序?qū)崝?shù)對的概念,認(rèn)識平面直角坐標(biāo)系的相關(guān)知識,如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。

  2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對的一一對應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。

  3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點(diǎn)的位置。

  【過程與方法】

  1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標(biāo)系的作用。

  2。學(xué)會用有序?qū)崝?shù)對和平面直角坐標(biāo)系中的點(diǎn)來描述物體的位置。

  【情感、態(tài)度與價(jià)值觀】

  通過引入有序?qū)崝?shù)對、平面直角坐標(biāo)系讓學(xué)生體會到現(xiàn)實(shí)生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  認(rèn)識平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。

  【難點(diǎn)】

  理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

  教學(xué)過程

  一、創(chuàng)設(shè)情境、導(dǎo)入新知

  師:如果讓你描述自己在班級中的位置,你會怎么說?

  生甲:我在第3排第5個座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號,是對應(yīng)某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體

  的位置,這兩個數(shù)量我們可以用一個實(shí)數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

  生:3排5號。

  師:對,它們對應(yīng)的不是同一個位置,所以要求表示物體位置的這個實(shí)數(shù)對是有序的。誰來說說我們應(yīng)該怎樣表示一個物體的位置呢?

  生:用一個有序的實(shí)數(shù)對來表示。

  師:對。我們學(xué)過實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的,有序?qū)崝?shù)對是不是也可以和一個點(diǎn)對應(yīng)起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個平面叫做坐標(biāo)平面。

  師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個有序?qū)崝?shù)對來表示了,F(xiàn)在請大家自己動手畫一個平面直角坐標(biāo)系。

  學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯誤。

  教師邊操作邊講解:

  如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點(diǎn)P的`坐標(biāo)。在x軸上的點(diǎn),過這點(diǎn)向y軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過這點(diǎn)向x軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。

  教師多媒體出示:

  師:如圖,請同學(xué)們寫出A、B、C、D這四點(diǎn)的坐標(biāo)。

  生甲:A點(diǎn)的坐標(biāo)是(—5,4)。

  生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。

  生丙:C點(diǎn)的坐標(biāo)是(4,0)。

  生。篋點(diǎn)的坐標(biāo)是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個點(diǎn)呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標(biāo)是3的點(diǎn),過這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請同學(xué)們在方格紙中建立一個平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點(diǎn)。

  學(xué)生動手作圖,教師巡視指導(dǎo)。

  三、深入探究,層層推進(jìn)

  師:兩個坐標(biāo)軸把坐標(biāo)平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時(shí)針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號一樣嗎?縱坐標(biāo)的符號一樣嗎?

  生:都一樣。

  師:對,由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號為+,縱坐標(biāo)的符號也為+。你能說出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號嗎?

  生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號為(+,—)。

  師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號為(—,+),你能判斷這點(diǎn)是在哪個象限嗎?

  生:能,在第二象限。

  四、練習(xí)新知

  師:現(xiàn)在我給出幾個點(diǎn),你們判斷一下它們分別在哪個象限。

  教師寫出四個點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點(diǎn)在第三象限。

  生乙:B點(diǎn)在第四象限。

  生丙:C點(diǎn)不屬于任何一個象限,它在y軸上。

  生。篋點(diǎn)不屬于任何一個象限,它在x軸上。

  師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標(biāo)系,在上面描出這些點(diǎn)。

  學(xué)生作圖,教師巡視,并予以指導(dǎo)。

  五、課堂小結(jié)

  師:本節(jié)課你學(xué)到了哪些新的知識?

  生:認(rèn)識了平面直角坐標(biāo)系,會寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個象限以及四個象限內(nèi)點(diǎn)的符號特征。

  教師補(bǔ)充完善。

  教學(xué)反思

  物體位置的說法和表述物體的位置等問題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動中,主動學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)

  教學(xué)目標(biāo)

  【知識與技能】

  進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識坐標(biāo)系中的圖形。

  【過程與方法】

  通過探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價(jià)值觀】

  培養(yǎng)學(xué)生的合作交流意識和探索精神,體驗(yàn)通過二維坐標(biāo)來描述圖形頂點(diǎn),從而描述圖形的方法。

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。

  【難點(diǎn)】

  不規(guī)則圖形面積的求法。

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個點(diǎn)表示出來。下面請大家在方格紙上建立一個平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個點(diǎn)。

  學(xué)生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個點(diǎn)用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計(jì)算出它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎樣算的呢?

  生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學(xué)生完成操作后回答:平行四邊形。

  師:你能計(jì)算它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎么計(jì)算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

  教師多媒體出示下圖:

八年級數(shù)學(xué)教案6

  學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。

  學(xué)習(xí)難點(diǎn):認(rèn)識函數(shù),領(lǐng)會函數(shù)的意義。

  【自主復(fù)習(xí)知識準(zhǔn)備】

  請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。

  【自主探究知識應(yīng)用】

  請看書72——74頁內(nèi)容,完成下列問題:

  1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

  2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。

  3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

  歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的'________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  補(bǔ)充小結(jié):

  (1)函數(shù)的定義:

  (2)必須是一個變化過程;

  (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應(yīng)。

  三、鞏固與拓展:

  例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

  (1)寫出表示y與x的函數(shù)關(guān)系式.

  (2)指出自變量x的取值范圍.

  (3) 汽車行駛200千米時(shí),油箱中還有多少汽油?

  【當(dāng)堂檢測知識升華】

  1、判斷下列變量之間是不是函數(shù)關(guān)系:

  (1)長方形的寬一定時(shí),其長與面積;

  (2)等腰三角形的底邊長與面積;

  (3)某人的年齡與身高;

  2、寫出下列函數(shù)的解析式.

  (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

  (2)汽車加油時(shí),加油槍的流量為10L/min.

 、偃绻佑颓埃拖淅镞有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

 、谌绻佑蜁r(shí),油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

  (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點(diǎn))有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

  八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對性的設(shè)置,希望大家喜歡!

八年級數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

  2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡單的現(xiàn)象。

  3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。

  4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

  教學(xué)重點(diǎn):

  體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

  教學(xué)難點(diǎn):

  對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

  教學(xué)方法:

  歸納教學(xué)法。

  教學(xué)過程:

  一、知識回顧與思考

  1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

  一般地對于n個數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

  如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計(jì)入總成績,這樣計(jì)算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項(xiàng)測試成績的權(quán)。

  中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

  眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的`那個數(shù)據(jù)。

  如3,2,3,5,3,4中3是眾數(shù)。

  2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

  (1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

  (2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。

  (3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

  (4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當(dāng)一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時(shí),適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。

  3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

  算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。

  4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。

  利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。

  二、例題講解:

  某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績分別按40%、20%、40%的比例計(jì)入學(xué)期總評成績,小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?

  三、課堂練習(xí):

  復(fù)習(xí)題A組

  四、小結(jié):

  1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。

  2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

  五、作業(yè):

  復(fù)習(xí)題B組、C組(選做)

八年級數(shù)學(xué)教案8

  【教學(xué)目標(biāo)】

  1.了解分式概念.

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)重難點(diǎn)】

  重點(diǎn):理解分式有意義的條件,分式的值為零的條件.

  難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)過程】

  一、課堂導(dǎo)入

  1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.

  2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的`流速為多少?

  設(shè)江水的流速為x千米/時(shí).

  輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.

  3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.

  二、例題講解

  例1:當(dāng)x為何值時(shí),分式有意義.

  【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.

  (補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?

  (1);(2);(3).

  【分析】分式的值為0時(shí),必須同時(shí)滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

  三、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.當(dāng)x取何值時(shí),下列分式有意義?

  3.當(dāng)x為何值時(shí),分式的值為0?

  四、小結(jié)

  談?wù)勀愕氖斋@.

  五、布置作業(yè)

  課本128~129頁練習(xí).

八年級數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點(diǎn)、難點(diǎn)

  1、重點(diǎn):理解分式的基本性質(zhì)。

  2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點(diǎn)與突破方法

  教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

  3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

  四、課堂引入

  1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2.填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的.分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3.約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4.通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

八年級數(shù)學(xué)教案10

  教學(xué)目標(biāo):

  1、知識目標(biāo):探索圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合)。

  2、能力目標(biāo):

  ①經(jīng)歷對具有旋轉(zhuǎn)特征的圖形進(jìn)行觀察、分析、動手操作和畫圖等過程,掌握畫圖技能。

 、谀軌虬匆笞鞒龊唵纹矫鎴D形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達(dá)到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。

  3、情感體驗(yàn)點(diǎn):培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):圖形之間的變換關(guān)系(軸對稱、平移、旋轉(zhuǎn)及其組合);

  難點(diǎn):綜合利用各種變換關(guān)系觀察圖形的形成。

  疑點(diǎn):基本圖案不同,形成方式不同。

  教學(xué)方法:

  新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。

  教學(xué)過程設(shè)計(jì):

  1、情境導(dǎo)入

  播放自制圖形形成的影片,如圖351。

  2、充分利用本課時(shí)引入開放性的問題:圖351由四部分組成,每部分都包括兩個小十字,其中一部分能經(jīng)過適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對稱嗎?還有其它方式嗎?

  問題本身為學(xué)生創(chuàng)設(shè)了一個探究圖形之間變化關(guān)系的情景,圖形雖十簡單,但變換方式綜合性強(qiáng),可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進(jìn)行適當(dāng)歸納小結(jié):

  (1)整個圖形可以看做是由一個十字組成部分通過連續(xù)七次平移前后的圖形共同組成;

  (2)整個圖形也可以看做是由左邊的兩個十字組成的部分通過三次放置形成的;

  (3)整個圖形不定期可以看做把左邊的兩個十字組成的部分先通過平移一次形成左右四個十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;

  (4)整個圖形還可以看做把左邊的兩個十字組成的部分通過二次軸對稱形成的。

  (學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)

  3、通過上述問題的討論,我們看到圖形的平移、旋轉(zhuǎn),軸對稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計(jì)圖案的主要手段。

  4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?

  學(xué)生議論或動手操作會發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時(shí),要充分利用它們各自的性質(zhì)、特征正確判斷和識別。那么上述圖形能通過軸對稱變換從左圖變成右圖嗎?進(jìn)一步讓學(xué)生思考,從而得到結(jié)論是可能的。

  5、例1、怎樣將圖353中的甲圖變成乙圖案?

  通過相對簡單活潑的問題,讓學(xué)生能運(yùn)用圖形變換的幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)

  例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

  留給學(xué)生充足的時(shí)間討論交流。

  (師):哪位同學(xué)有好好方法,請告訴大家!

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時(shí)針方向旋轉(zhuǎn)900 。

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時(shí)針方向旋轉(zhuǎn)2700 。

  明確可以通過不同的辦法達(dá)到同樣的效果,激勵學(xué)生動手動腦。

  5、學(xué)習(xí)小結(jié)

  (1)內(nèi)容總結(jié)

  兩個圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對稱)

  (2)方法歸納

 、倭私獠⒅缊D案變化的一般方法。

 、趫D案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的`習(xí)慣。

  6、目標(biāo)檢測

  圖355是由三個正三角形拼成的,它可以看做由其中一個三角形經(jīng)過怎樣的變換而得到?

  延伸拓展:

  1、鏈接生活

  鏈接一:奧運(yùn)會的五環(huán)旗圖案是大家熟悉的圖案,請你根據(jù)所學(xué)知識分析它的形成。(用課本知識解釋生活中的圖形變換)

  鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請你用所學(xué)知識再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進(jìn)一步體會數(shù)學(xué)與生活的密切聯(lián)系)

  實(shí)踐探索:

 、賹(shí)踐活動列舉實(shí)例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對稱及其組合)

 、陟柟叹毩(xí)課本74頁中的習(xí)題3.6。

  板書設(shè)計(jì):

  3.5它們是怎樣變過來的。

  軸對稱、平移、旋轉(zhuǎn)的性質(zhì)例題;

  圖形之間的變換關(guān)系;

八年級數(shù)學(xué)教案11

  教材分析

  1、本小節(jié)內(nèi)容安排在第十四章“軸對稱”的第三節(jié)。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識,重點(diǎn)是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據(jù),這也是全章的重點(diǎn)之一。

  2、本節(jié)重在呈現(xiàn)一個動手操作得出概念、觀察實(shí)驗(yàn)得出性質(zhì)、推理證明論證性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會到一個觀察、實(shí)驗(yàn)、猜想、論證的研究幾何圖形問題的全過程,又能夠運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運(yùn)用知識和技能解決問題的能力。

  學(xué)情分析

  1、學(xué)生在此之前已接觸過等腰三角形,具有運(yùn)用全等三角形的判定及軸對稱的知識和技能,本節(jié)教學(xué)要突出“自主探究”的特點(diǎn),即教師引導(dǎo)學(xué)生通過觀察、實(shí)驗(yàn)、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新知、獲得新知的樂趣。

  2、在與等腰三角形有關(guān)的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學(xué)生的.學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質(zhì)的問題,沒有注意選擇簡便方法。

  教學(xué)目標(biāo)

  知識技能:1、理解掌握等腰三角形的性質(zhì)。

  2、運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。

  數(shù)學(xué)思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。

  2、通過時(shí)間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。

  情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識解決問題的活動中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):等腰三角形的性質(zhì)及應(yīng)用。

  難點(diǎn):等腰三角形的性質(zhì)證明。

八年級數(shù)學(xué)教案12

  課題:一元二次方程實(shí)數(shù)根錯例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時(shí)少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。

  【典型例題】

  例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實(shí)根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個實(shí)根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

  錯解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實(shí)數(shù)根x1、x2。

  (1)求k的取值范圍;

 。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時(shí),方程有兩個不相等的'實(shí)數(shù)根。

 。2)存在。

  如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

  ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

 。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個不相等的實(shí)數(shù)根。

  (2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

  解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

  (2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

  又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

  1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

  2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

  3、條件多面時(shí)(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。

  求證:關(guān)于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一個或兩個實(shí)數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

  (1)若方程的一個根為1,求m的值。

 。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請說明理由。

  3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計(jì)的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡單的圖案。

  2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗(yàn)點(diǎn):經(jīng)歷對典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

  難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

  疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

  教具學(xué)具準(zhǔn)備:

  提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

  教學(xué)過程設(shè)計(jì):

  1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

  2、課本

  1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

  評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

  評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習(xí)

  (1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的'基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計(jì),并簡要說明自己的設(shè)計(jì)意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交流。

  (四)課時(shí)小結(jié)

  本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡單的圖案。

  通過今天的學(xué)習(xí),你對圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

  八年級數(shù)學(xué)上冊教案(五)延伸拓展

  進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。

八年級數(shù)學(xué)教案14

  一、學(xué)習(xí)目標(biāo)

  1.使學(xué)生了解運(yùn)用公式法分解因式的意義;

  2.使學(xué)生掌握用平方差公式分解因式

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):掌握運(yùn)用平方差公式分解因式。

  難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。

  學(xué)習(xí)方法:歸納、概括、總結(jié)。

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問題情境,引入新課

  在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個多項(xiàng)式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項(xiàng)式化成幾個因式乘積的形式。

  如果一個多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的.方法——公式法。

  1.請看乘法公式

  左邊是整式乘法,右邊是一個多項(xiàng)式,把這個等式反過來就是左邊是一個多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

  利用平方差公式進(jìn)行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式講解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精講精練

  例1、把下列各式分解因式:

  (1)25—16x2;

  (2)9a2—b2。

  例2、把下列各式分解因式:

  (1)9(m+n)2—(m—n)2;

  (2)2x3—8x。

  補(bǔ)充例題:判斷下列分解因式是否正確。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)(a2—1)。

  五、課堂練習(xí)

  教科書練習(xí)。

  六、作業(yè)

  1、教科書習(xí)題。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

八年級數(shù)學(xué)教案15

  一、教材分析:

  《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容?v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。

  本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。

  (一)知識目標(biāo):

  1、要求學(xué)生掌握正方形的概念及性質(zhì);

  2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計(jì)算、推理、論證;

  (二)能力目標(biāo):

  1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;

  2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;

  (三)情感目標(biāo):

  1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);

  2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;

  3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

  二、學(xué)生分析:

  該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計(jì)了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

  三、教法分析:

  針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。

  通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

  四、學(xué)法分析:

  本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。

  五、教學(xué)程序:

  第一環(huán)節(jié):相關(guān)知識回顧

  以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。

  第二環(huán)節(jié):新課講解通過學(xué)生們的'發(fā)現(xiàn)引出課題“正方形”

  1、正方形的定義

  引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

  2、正方形的性質(zhì)

  定理1:正方形的四個角都是直角,四條邊都相等;

  定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

  以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。

  3、例題講解

  求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學(xué)提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時(shí)強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達(dá)能力,讓學(xué)生的個性得到充分的展示

  4、課堂練習(xí)

  第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計(jì)算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。

  第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。

  5、課堂小結(jié)

  此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。

  6、作業(yè)設(shè)計(jì)

  作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

人教版八年級數(shù)學(xué)教案11-04

初中八年級數(shù)學(xué)教案11-03

八年級下冊數(shù)學(xué)教案01-01

八年級數(shù)學(xué)教案【熱】11-29

八年級數(shù)學(xué)教案【薦】12-06

八年級數(shù)學(xué)教案人教版01-03

八年級的數(shù)學(xué)教案15篇12-14

八年級的數(shù)學(xué)教案(15篇)12-15