人教版八年級數(shù)學教案(通用20篇)
作為一位無私奉獻的人民教師,就有可能用到教案,教案有助于順利而有效地開展教學活動。寫教案需要注意哪些格式呢?下面是小編收集整理的人教版八年級數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數(shù)學教案 1
教學目標:
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。
重點難點:
重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點:勾股定理的發(fā)現(xiàn)
教學過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學生的學習熱情,導入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個小方格,即A的`面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?在學生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?
學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A,B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關(guān)系?
2、圖1—4中,A,B,C之間有什么關(guān)系?
3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學生討論、交流形成共識后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”,也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c,那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊,綜上所述這個題目條件不足,第三邊無法求得。
2、練習P7§1.11
六、作業(yè)
課本P7§1.12、3、4
八年級數(shù)學教案 2
一、教學目標
1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點的突破方法:
首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當一組數(shù)據(jù)中某一重復出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。
教學過程中注重雙基,一定要使學生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學在分析不同實例中有所體會。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)
(3)、問題2顯然反映學習中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學中的一個重要的數(shù)據(jù)代表。
(4)、這個例題再一次體現(xiàn)了統(tǒng)計學知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學生學好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應(yīng)使學生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。
六、隨堂練習
1、某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的'銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:
1.(1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。
2.(1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
七、課后練習
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是()
A.97、96B.96、96.4C.96、97D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()
A.24、25B.23、24C.25、25D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃)-8-1715212430
天數(shù)3557622
請你根據(jù)上述數(shù)據(jù)回答問題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1.9;2.22;3.B;4.C;5.(1)15.(2)約97天
八年級數(shù)學教案 3
教學目標
1.知識與技能
領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力。
2.過程與方法
經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟。
3.情感、態(tài)度與價值觀
培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力。
重、難點與關(guān)鍵
1.重點:理解完全平方公式因式分解,并學會應(yīng)用。
2.難點:靈活地應(yīng)用公式法進行因式分解。
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的。
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容。
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;
(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;
(2)(m+4n)2;
(3)(a+b)2;
(4)(a-b)2.
【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學生活動】從逆向思維的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學習,應(yīng)用所學
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;
(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的`平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3。
三、隨堂練習,鞏固深化
課本P170練習第1、2題。
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應(yīng)考慮用完全平方公式分解;
(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;
(3)當多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解。
五、布置作業(yè),專題突破
八年級數(shù)學教案 4
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.
2.內(nèi)容解析
本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情。
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用.它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備.
本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.
二、目標和目標解析
1.教學目標
(1)理解三角形的高、中線與角平分線等概念;
(2)會用工具畫三角形的高、中線與角平分線;
2.教學目標解析
(1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質(zhì).
(3)掌握三角形的高、中線與角平分線的畫法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.
三、教學問題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的`頂點,另一個端點在這個頂點的對邊或?qū)吽诘闹本上.
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.
八年級數(shù)學教案 5
一、教學目標:
1、加深對加權(quán)平均數(shù)的理解
2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題
3、會用計算器求加權(quán)平均數(shù)的值
二、重點、難點和難點的突破方法:
1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點的突破方法:
首先應(yīng)先復習組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復習組中值定義。
應(yīng)給學生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。
三、例習題的意圖分析
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
(2)、加深了對“權(quán)”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學生去回憶、復習七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題
(2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據(jù)的能力。
3、P141利用計算器計算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的`使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
四、課堂引入
采用教材原有的引入問題,設(shè)計的幾個問題如下:
(1)、請同學讀P140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習
1、某校為了了解學生作課外作業(yè)所用時間的情況,對學生作課外作業(yè)所用時間進行調(diào)查,下表是該校初二某班50名學生某一天做數(shù)學課外作業(yè)所用時間的情況統(tǒng)計表
所用時間t(分鐘)人數(shù)
0 0<≤6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學生平均每天做數(shù)學作業(yè)所用時間 2、某班40名學生身高情況如下圖, 請計算該班學生平均身高 答案1.(1).15.(2)28.2.165 六、課后練習: 1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表 部門ABCDEFG 人數(shù)1124225 每人創(chuàng)得利潤2052.521.51.51.2 該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元? 2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡? 年齡頻數(shù) 28≤X<304 30≤X<323 32≤X<348 34≤X<367 36≤X<389 38≤X<4011 40≤X<422 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬元2.約29歲3.60.54分貝 教學目標: 知識與技能 1.掌握直角三角形的判別條件,并能進行簡單應(yīng)用; 2.進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學問題的能力,建立數(shù)學模型. 3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論. 情感態(tài)度與價值觀 敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應(yīng)用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識. 教學重點 運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論. 教學難點 會辨析哪些問題應(yīng)用哪個結(jié)論. 課前準備 標有單位長度的細繩、三角板、量角器、題篇 教學過程: 復習引入: 請學生復述勾股定理;使用勾股定理的前提條件是什么? 已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎? 創(chuàng)設(shè)問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法. 這樣做得到的是一個直角三角形嗎? 提出課題:能得到直角三角形嗎 講授新課: ⒈如何來判斷?(用直角三角板檢驗) 這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系? 就是說,如果三角形的三邊為,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的'平方和等于較大邊的平方時) 、怖^續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c: 5,12,13;6,8,10;8,15,17. (1)這三組數(shù)都滿足a2+b2=c2嗎? (2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎? 、持苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形. 滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù). 、蠢1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎? 隨堂練習: 、毕铝袔捉M數(shù)能否作為直角三角形的三邊長?說說你的理由. 、9,12,15;⑵15,36,39; ⑶12,35,36;⑷12,18,22. 、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角. 、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積. 、戳曨}1.3 課堂小結(jié): 、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形. 、矟M足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù). 一、學習目標: 讓學生了解多項式公因式的意義,初步會用提公因式法分解因式 二、重點難點 重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來 難點:讓學生識別多項式的公因式。 三、合作學習: 公因式與提公因式法分解因式的概念. 三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c) 既ma+mb+mc=m(a+b+c) 由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。 四、精講精練 例1、將下列各式分解因式: (1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x. 例2把下列各式分解因式: (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2. (3)a(x-3)+2b(x-3) 通過剛才的.練習,下面大家互相交流,總結(jié)出找公因式的一般步驟. 首先找各項系數(shù)的____________________,如8和12的公約數(shù)是4. 其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的 課堂練習 1.寫出下列多項式各項的公因式. (1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab 2.把下列各式分解因式 (1)8x-72(2)a2b-5ab (3)4m3-6m2(4)a2b-5ab+9b (5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2 五、小結(jié): 總結(jié)出找公因式的一般步驟.: 首先找各項系數(shù)的大公約數(shù), 其次找各項中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的 注意:(a-b)2=(b-a)2 六、作業(yè) 1、教科書習題 2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20xx+(-2)20xx 4、已知a-2b=2,4-5b=6,求3a(a-2b)2-5(2b-a)3 教學目標: 1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。 2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。 3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。 4、能利和計算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。 教學重點: 體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。 教學難點: 對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。 教學方法: 歸納教學法。 教學過程: 一、知識回顧與思考 1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。 一般地對于n個數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。 如某公司要招工,測試內(nèi)容為數(shù)學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學,語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學、語文、外語三項測試成績的權(quán)。 中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。 眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的.那個數(shù)據(jù)。 如3,2,3,5,3,4中3是眾數(shù)。 2、平均數(shù)、中位數(shù)和眾數(shù)的特征: (1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。 。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。 。3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。 。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。 3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系: 算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù)。 4、利用計算器求一組數(shù)據(jù)的平均數(shù)。 利用科學計算器求平均數(shù)的方法計算平均數(shù)。 二、例題講解: 例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下: 每人銷售件數(shù)1800510250210150120 人數(shù)113532 。1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù); 。2)假設(shè)銷售部負責人把每位營銷員的月銷售額定為平均數(shù),你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。 例2,某校規(guī)定:學生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學成績依次為90分,92分,85分,小亮這學期的數(shù)學總評成績是多少? 三、課堂練習:復習題A組 四、小結(jié): 1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。 2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。 五、作業(yè):復習題B組、C組(選做) 教學目標: 知識目標: 1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。 2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。 3、會對一個具體實例進行概括抽象成為數(shù)學問題。 能力目標: 1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。 2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。 情感目標: 1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。 2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。 教學重點: 掌握函數(shù)概念。 判斷兩個變量之間的關(guān)系是否可看作函數(shù)。 能把實際問題抽象概括為函數(shù)問題。 教學難點: 理解函數(shù)的概念。 能把實際問題抽象概括為函數(shù)問題。 教學過程設(shè)計: 一、創(chuàng)設(shè)問題情境,導入新課 『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么? 『生』:摩天輪。 『師』:你們坐過嗎? …… 『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢? 『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉(zhuǎn)動一圈高度就重復一次。 『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。 大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表: t/分012345……h(huán)/米 t/分012345……h(huán)/米31137453711…… 『師』:對于給定的時間t,相應(yīng)的高度h確定嗎? 『生』:確定。 『師』:在這個問題中,我們研究的對象有幾個?分別是什么? 『生』:研究的對象有兩個,是時間t和高度h。 『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。 二、新課學習 做一做 。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的? 填寫下表: 層數(shù)n12345…物體總數(shù)y1361015…『師』:在這個問題中的變量有幾個?分別師什么? 『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。 。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時) ①計算當fenbie為50,60,100時,相應(yīng)的滑行距離S是多少? 、诮o定一個V值,你能求出相應(yīng)的S值嗎? 解:略 議一議 『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么? 『生』:相同點是:這三個問題中都研究了兩個變量。 不同點是:在第一個問題中,是以圖象的.形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。 『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。 函數(shù)的概念 在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。 一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。 三、隨堂練習 書P152頁隨堂練習1、2、3 四、本課小結(jié) 初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。 在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。 函數(shù)的三種表達式: 圖象;(2)表格;(3)關(guān)系式。 五、探究活動 為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)? 。ù鸢福篩=1.8x-6或) 六、課后作業(yè) 習題6.1 學習目標: 1、能推導平方差公式,并會用幾何圖形解釋公式; 2、能用平方差公式進行熟練地計算; 3、經(jīng)歷探索平方差公式的推導過程,發(fā)展符號感,體會特殊一般特殊的認識規(guī)律. 學習重難點: 重點:能用平方差公式進行熟練地計算; 難點:探索平方差公式,并用幾何圖形解釋公式. 學習過程: 一、自主探索 1、計算:(1)(m+2)(m-2)(2)(1+3a)(1-3a) (3)(x+5y)(x-5y)(4)(y+3z)(y-3z) 2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn). 3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎? 4、平方差公式的特征: (1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差;蛘哒f兩個二項式必須有一項完全相同,另一項只有符號不同。 (2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。 二、試一試 例1、利用平方差公式計算 (1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n) 例2、利用平方差公式計算 (1)(1)(-x-y)(-x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n2 三、合作交流 如圖,邊長為a的大正方形中有一個邊長為b的小正方形. (1)請表示圖中陰影部分的面積. (2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎?aab (3)比較(1)(2)的結(jié)果,你能驗證平方差公式嗎? 四、鞏固練習 1、利用平方差公式計算 (1)(a+2)(a-2)(2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3) 2、利用平方差公式計算 (1)803797(2)398402 3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示() A.只能是數(shù)B.只能是單項式C.只能是多項式D.以上都可以 4.下列多項式的乘法中,可以用平方差公式計算的是() A.(a+b)(b+a)B.(-a+b)(a-b) C.(a+b)(b-a)D.(a2-b)(b2+a) 5.下列計算中,錯誤的有() 、(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; 、(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2. A.1個B.2個C.3個D.4個 6.若x2-y2=30,且x-y=-5,則x+y的`值是() A.5B.6C.-6D.-5 7.(-2x+y)(-2x-y)=______. 8.(-3x2+2y2)(______)=9x4-4y4. 9.(a+b-1)(a-b+1)=(_____)2-(_____)2. 10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____. 11.利用平方差公式計算:2019. 12.計算:(a+2)(a2+4)(a4+16)(a-2). 五、學習反思 我的收獲: 我的疑惑: 六、當堂測試 1、下列多項式乘法中能用平方差公式計算的是(). (A)(x+1)(1+x)(B)(1/2b+b)(-b-1/2a)(C)(-a+b)(-a-b)(D)(x2-y)(x+y2)[ 2、填空:(1)(x2-2)(x2+2)= (2)(5x-3y)()=25x2-9y2 3、計算: (1)(-2x+3y)(-2x-3y)(2)(a-2)(a+2)(a2+4) 4.利用平方差公式計算 、1003997②1415 七、課外拓展 下列各式哪些能用平方差公式計算?怎樣用? 1)(a-b+c)(a-b-c) 2)(a+2b-3)(a-2b+3) 3)(2x+y-z+5)(2x-y+z+5) 4)(a-b+c-d)(-a-b-c-d) 2.2完全平方公式(1) 一、教學目的 1.使學生進一步理解自變量的取值范圍和函數(shù)值的意義. 2.使學生會用描點法畫出簡單函數(shù)的圖象. 二、教學重點、難點 重點:1.理解與認識函數(shù)圖象的意義. 2.培養(yǎng)學生的看圖、識圖能力. 難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應(yīng)值問題. 三、教學過程 復習提問 1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.) 2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象? 3.說出下列各點所在象限或坐標軸: 新課 1.畫函數(shù)圖象的方法是描點法.其步驟: (1)列表.要注意適當選取自變量與函數(shù)的對應(yīng)值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了. 一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應(yīng)值列出表來. (2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標,在直角坐標系中描出相應(yīng)的點. (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線. 一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的.幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線). 2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象. 小結(jié) 本節(jié)課的重點是讓學生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖. 練習 、龠x用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線) 、谘a充題:畫出函數(shù)y=5x-2的圖象. 作業(yè) 選用課本習題. 四、教學注意問題 1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認識函數(shù)的本質(zhì)特征. 2.注意充分調(diào)動學生自己動手畫圖的積極性. 3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力. 學習目標: 1.在同一直角坐標系中,感受點的坐標變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。 2.通過坐標的變化探索新舊圖形之間的變化。 重點: 1.對稱軸的對稱圖形,并且能寫出所得圖形各點的坐標。 2.根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。 難點: 1.理解并應(yīng)用直角坐標與極坐標。 2.解決一些簡單的問題。 學習過程: 第一課時 一、舊知回顧: 1.平面直角坐標系定義:在平面內(nèi),兩條垂直且有公共端點的數(shù)軸組成平面直角坐標系。 2.坐標平面內(nèi)點的坐標的表示方法是(x,y)。 3.各象限點的坐標的特征: 第一象限:x和y坐標都是正數(shù)。第二象限:x坐標為負數(shù),y坐標為正數(shù)。第三象限:x和y坐標都是負數(shù)。第四象限:x坐標為正數(shù),y坐標為負數(shù)。 二、新知檢索: 1.在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。 三、典例分析: 例1、 (1)將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢? (2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢? 例2、 (1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化? (2)將魚的頂點的橫坐標不變,縱坐標變成原來的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同? 四、習題組訓練 1、在平面直角坐標系中,將點(0,0)、(2,4)、(2,0)和(4,4)連接形成一個圖案。 (1)將這四個點的縱坐標保持不變,橫坐標變成原來的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化? (2)將縱坐標和橫坐標都增加3,所得到的圖形會發(fā)生怎樣的變化? (3)將縱坐標和橫坐標都乘以2,所得到的圖形會發(fā)生怎樣的變化? 歸納得出:圖形坐標變化的規(guī)律 1、平移規(guī)律 2、圖形伸縮規(guī)律 第二課時 一、已學內(nèi)容回顧: 1、軸對稱圖形的定義:如果一個圖形能夠沿著某條軸翻折成重合的兩部分,那么這個圖形就是軸對稱圖形。 2、中心對稱圖形的定義:如果一個圖形繞著某個點旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個圖形就是中心對稱圖形。 二、新學內(nèi)容引入: 1、如下圖所示,左邊的魚和右邊的魚是關(guān)于y軸對稱的。 (1)左邊的魚可以通過平移、壓縮或拉伸來得到右邊的魚嗎? (2)左邊魚和右邊魚的頂點坐標之間有怎樣的關(guān)系? (3)如果將右邊的魚沿著x軸正方向平移1個單位長度,然后通過不改變關(guān)于y軸對稱的條件,那么左邊的魚的頂點坐標會發(fā)生怎樣的`變化? 三、典型例題解析: 1、如下圖所示,右邊的魚是通過何種變換得到左邊的魚的? 2、如果將右邊魚的橫坐標保持不變,縱坐標變成原來的一倍,繪制得到的圖形與原圖形之間有何不同? 3、如果將右邊魚的縱坐標和橫坐標都變成原來的一倍,所得到的圖形和原圖形之間有何不同? 四、習題組練習: 1、當坐標發(fā)生如下變化時,圖形會做出怎樣的變化? 1、已知點位移的矩陣: 、伲▁,y)→(x,y+4) 、冢▁,y)→(x,y-2) 、郏▁,y)→(1/2x,y) 、埽▁,y)→(3x,y) 、荩▁,y)→(x,1/2y) 、蓿▁,y)→(3x,3y) 2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫出一個與它形狀大小完全一樣的蝴蝶,并標出它們的各個頂點坐標。 3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對稱圖形,并標出相應(yīng)端點的坐標。 4、簡要描繪圖示中楓葉圖案關(guān)于x軸對稱的軸對稱圖形。 一、教學目標: 1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系; 2、能力目標: ①,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系; 、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形; 3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。 二、重點與難點: 重點:圖形連續(xù)變化的.特點; 難點:圖形的劃分。 三、教學方法: 講練結(jié)合。使用多媒體課件輔助教學。 四、教具準備: 多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。 五、教學設(shè)計: 創(chuàng)設(shè)情景,探究新知: (演示課件):教材上小狗的圖案。提問: (1)這個圖案有什么特點? (2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成? (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化? 小組討論,派代表回答。(答案可以多種) 讓學生充分討論,歸納總結(jié),老師給予適當?shù)闹笇,并對每種答案都要肯定。 看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看? 小組討論,派代表到臺上給大家講解。 氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。 暢所欲言,互相補充。 課堂小結(jié): 在教師的引導下學生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。 課堂練習: 小組討論。 小組討論完成。 例子一定要和大家接觸緊密、典型。 答案不惟一,對于每種答案,教師都要給予充分的肯定。 六、教學反思: 本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。 教學目標: 1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。 2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。 教學重點: 算術(shù)平方根的概念。 教學難點: 根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。 教學過程 一、情境導入 請同學們欣賞本節(jié)導圖,并回答問題,學校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題? 這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念. 二、導入新課: 1、提出問題:(書P68頁的問題) 你是怎樣算出畫框的邊長等于5dm的.呢?(學生思考并交流解法) 這個問題相當于在等式擴=25中求出正數(shù)x的值. 一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0. 也就是,在等式 =a (x0)中,規(guī)定x = . 2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來. 3、 想一想:下列式子表示什么意思?你能求出它們的值嗎? 建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。 4、例1 求下列各數(shù)的算術(shù)平方根: (1)100;(2)1;(3) ;(4)0.0001 三、練習 P69練習 1、2 四、探究:(課本第69頁) 怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形? 方法1:課本中的方法,略; 方法2: 可還有其他方法,鼓勵學生探究。 問題:這個大正方形的邊長應(yīng)該是多少呢? 大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎? 建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究. 五、小結(jié): 1、這節(jié)課學習了什么呢? 2、算術(shù)平方根的具體意義是怎么樣的? 3、怎樣求一個正數(shù)的算術(shù)平方根。 六、課外作業(yè): P75習題13.1活動第1、2、3題。 一、學習目標 1.多項式除以單項式的運算法則及其應(yīng)用。 2.多項式除以單項式的運算算理。 二、重點難點 重點:多項式除以單項式的運算法則及其應(yīng)用。 難點:探索多項式與單項式相除的運算法則的過程。 三、合作學習 。ㄒ唬┗仡檰雾検匠詥雾検椒▌t (二)學生動手,探究新課 1.計算下列各式: 。1)(am+bm)÷m; (2)(a2+ab)÷a; 。3)(4x2y+2xy2)÷2xy。 2.提問: 、僬f說你是怎樣計算的; 、谶有什么發(fā)現(xiàn)嗎? (三)總結(jié)法則 1.多項式除以單項式:先把這個多項式的'每一項除以XXXXXXXXXXX,再把所得的商XXXXXX 2.本質(zhì):把多項式除以單項式轉(zhuǎn)化成XXXXXXXXXXXXXX 四、精講精練 例:(1)(12a3—6a2+3a)÷3a; 。2)(21x4y3—35x3y2+7x2y2)÷(—7x2y); 。3)[(x+y)2—y(2x+y)—8x]÷2x; 。4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。 隨堂練習:教科書練習。 五、小結(jié) 1、單項式的除法法則 2、應(yīng)用單項式除法法則應(yīng)注意: A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號; B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù); C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏; D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行; E、多項式除以單項式法則。 一、教學內(nèi)容: 本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。 二、教材分析: 完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學的基礎(chǔ)地位。 本節(jié)課內(nèi)容是在學生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導和應(yīng)用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數(shù)學工具。 重點:掌握完全平方公式,會運用公式進行簡單的計算。 難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。 三、教學目標 (1)經(jīng)歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。 (2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。 (3)通過推導完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。 (4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。 四、學情分析與教法學法 學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的'知識經(jīng)驗基礎(chǔ)之上,本節(jié)課就是在前面的學習中,學生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學生的學習熱情,本節(jié)內(nèi)容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。 學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結(jié)、合作交流 總結(jié)反思中獲得數(shù)學知識與技能。 教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結(jié)、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態(tài)。 五、教學過程 (略) 六、教學評價 在教學中,教師在精心設(shè)置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。 在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結(jié)論給予鼓勵評價。 學習目標 1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關(guān)系并能找出變化規(guī)律。 2、由坐標的變化探索新舊圖形之間的變化。 重點 1、 作某一圖形關(guān)于對稱軸的對稱圖形,并能寫出所得圖形相應(yīng)各點的坐標。 2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。 難點 體會極坐標和直角坐標思想,并能解決一些簡單的問題 學習過程(導入、探究新知、即時練習、小結(jié)、達標檢測、作業(yè)) 第一課時 學習過程: 一、舊知回顧: 1、平面直角坐標系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標系。 2、坐標平面內(nèi)點的坐標的表示方法____________。 3、各象限點的坐標的特征: 二、新知檢索: 1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1), (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形 三、典例分析 例1、 (1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢? (2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢? 例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化? (2)將魚的`頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化? 四、題組訓練 1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。 (1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化? (2)縱、橫分別加3呢? (3)縱、橫分別變成原來的2倍呢? 歸納:圖形坐標變化規(guī)律 1、 平移規(guī)律:2、圖形伸長與壓縮: 第二課時 一、舊知回顧: 1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。 中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形 二、新知檢索: 1、如圖,左邊的魚與右邊的魚關(guān)于y軸對稱。 1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎? 2、各個對應(yīng)頂點的坐標有怎樣的關(guān)系? 3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關(guān)于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化? 三、典例分析,如圖所示, 1、右圖的魚是通過什么樣的變換得到 左圖的魚的。 2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。 3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系 四、題組練習 1、將坐標作如下變化時,圖形將怎樣變化? 、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y) 、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y) 2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。 3、 如圖,作字母M關(guān)于y軸的軸對稱圖形,并寫出所得圖形相應(yīng)各端點的坐標。 4、 描出下圖中楓葉圖案關(guān)于x軸的軸對稱圖形的簡圖。 學習筆記 一、教材分析: 《正方形》這節(jié)課是九年義務(wù)版數(shù)學教材八年級下冊第章第二節(jié)的內(nèi)容?v觀整個教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。 本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。 (一)知識目標: 1、要求學生掌握正方形的概念及性質(zhì); 2、能正確運用正方形的`性質(zhì)進行簡單的計算、推理、論證; 。ǘ┠芰δ繕耍 1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、等能力; 2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法; 。ㄈ┣楦心繕耍 1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風; 2、培養(yǎng)學生互相幫助、團結(jié)協(xié)作、相互討論的精神; 3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。 二、學生分析: 該段學生具有一定的獨立思考和探究的能力,但表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設(shè)計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。 三、教法分析: 針對本節(jié)課的特點,采用"--觀察--總結(jié)歸納--運用"為主線的教學方法。 通過學生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。 四、學法分析: 本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。 五、教學程序: 第一環(huán)節(jié):相關(guān)知識回顧 以提問的形式復習的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導學生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結(jié)論。 第二環(huán)節(jié):新課講解通過學生們的發(fā)現(xiàn)引出課題“正方形” 1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。 2、正方形的性質(zhì) 定理1:正方形的四個角都是直角,四條邊都相等; 定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。 以上是對正方形定義和性質(zhì)的學習,之后是進行例題講解。 4、課堂練習:第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學生掌握的情況。 第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質(zhì),使他們充分認識到數(shù)學實質(zhì)是來源于生活并要于生活。 5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學習以豐富的知識充實自己,達到理想中的完美。 6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關(guān)正方形的知識。 教學目標 1.知識與技能 領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力. 2.過程與方法 經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟. 3.情感、態(tài)度與價值觀 培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力. 重、難點與關(guān)鍵 1.重點:理解完全平方公式因式分解,并學會應(yīng)用. 2.難點:靈活地應(yīng)用公式法進行因式分解. 3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的 教學方法 采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容. 教學過程 一、回顧交流,導入新知 【問題牽引】 1.分解因式: (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2; (3)x2-0.01y2. 【知識遷移】 2.計算下列各式: (1)(m-4n)2;(2)(m+4n)2; (3)(a+b)2;(4)(a-b)2. 【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律. 3.分解因式: (1)m2-8mn+16n2(2)m2+8mn+16n2; (3)a2+2ab+b2;(4)a2-2ab+b2. 【學生活動】從逆向思維的角度入手,很快得到下面答案: 解: (1)m2-8mn+16n2=(m-4n)2; (2)m2+8mn+16n2=(m+4n)2; (3)a2+2ab+b2=(a+b)2; (4)a2-2ab+b2=(a-b)2. 【歸納公式】完全平方公式a2±2ab+b2=(a±b)2. 二、范例學習,應(yīng)用所學 【例1】把下列各式分解因式: (1)-4a2b+12ab2-9b3; (2)8a-4a2-4; (3)(x+y)2-14(x+y)+49;(4)+n4. 【例2】如果x2+axy+16y2是完全平方,求a的值. 【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3. 三、隨堂練習,鞏固深化 課本P170練習第1、2題. 【探研時空】 1.已知x+y=7,xy=10,求下列各式的值. (1)x2+y2;(2)(x-y)2 2.已知x+=-3,求x4+的`值. 四、課堂總結(jié),發(fā)展?jié)撃?/p> 由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個: a2-b2=(a+b)(a-b); a2±ab+b2=(a±b)2. 在運用公式因式分解時,要注意: (1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解. 五、布置作業(yè),專題突破 一、教學目標 1、理解分式的基本性質(zhì)。 2、會用分式的基本性質(zhì)將分式變形。 二、重點、難點 1、重點:理解分式的基本性質(zhì)。 2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。 3、認知難點與突破方法 教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。 三、練習題的意圖分析 1.P7的例2是使學生觀察等式左右的已知的'分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。 2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。 教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。 3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。 “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。 四、課堂引入 1、請同學們考慮:與相等嗎?與相等嗎?為什么? 2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)? 3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。 五、例題講解 P7例2.填空: [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。 P11例3.約分: [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。 P11例4.通分: [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。 【八年級數(shù)學教案】相關(guān)文章: 八年級的數(shù)學教案12-14 八年級數(shù)學教案12-09 八年級下冊數(shù)學教案01-01 八年級的數(shù)學教案15篇12-14 人教版八年級數(shù)學教案11-04 八年級數(shù)學教案【薦】12-06 【熱】八年級數(shù)學教案12-07 【薦】八年級數(shù)學教案12-03 八年級數(shù)學教案 6
八年級數(shù)學教案 7
八年級數(shù)學教案 8
八年級數(shù)學教案 9
八年級數(shù)學教案 10
八年級數(shù)學教案 11
八年級數(shù)學教案 12
八年級數(shù)學教案 13
八年級數(shù)學教案 14
八年級數(shù)學教案 15
八年級數(shù)學教案 16
八年級數(shù)學教案 17
八年級數(shù)學教案 18
八年級數(shù)學教案 19
八年級數(shù)學教案 20