国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

八年級數(shù)學(xué)教案

時間:2022-09-13 19:11:00 八年級數(shù)學(xué)教案 我要投稿

關(guān)于八年級數(shù)學(xué)教案范文匯總五篇

  作為一名老師,就難以避免地要準(zhǔn)備教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

關(guān)于八年級數(shù)學(xué)教案范文匯總五篇

八年級數(shù)學(xué)教案 篇1

  教材分析

  因式分解是代數(shù)式的一種重要恒等變形!稊(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的.能力。

  學(xué)情分析

  通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

  教學(xué)目標(biāo)

  1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

  2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

  3、能運用提公因式法、公式法進行綜合運用。

  4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

  教學(xué)重點和難點

  重點: 靈活運用平方差公式進行分解因式。

  難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

八年級數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo):

  (1)理解通分的意義,理解最簡公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運算。

  教學(xué)重點:分式通分的理解和掌握。

  教學(xué)難點:分式通分中最簡公分母的確定。

  教學(xué)工具:投影儀

  教學(xué)方法:啟發(fā)式、討論式

  教學(xué)過程:

  (一)引入

  (1)如何計算:

  由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

  (2)如何計算:

  (3)何計算:

  引導(dǎo)學(xué)生思考,猜想如何求解?

  (二)新課

  1、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據(jù):分式的基本性質(zhì).

  3.通分的關(guān)鍵:確定幾個分式的最簡公分母.

  通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

  根據(jù)分式通分和最簡公分母的定義,將分式通分:

  最簡公分母為:

  然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼剑垢鞣质降姆帜付蓟癁橥ǚ秩缦拢簒xx

  通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

  例1 通分:xxx

  分析:讓學(xué)生找分式的'公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

  解:∵ 最簡公分母是12xy2,

  小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

  解:∵最簡公分母是10a2b2c2,

  由學(xué)生歸納最簡公分母的思路。

  分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。

八年級數(shù)學(xué)教案 篇3

  一、教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實際問題.

  2.進一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.

  二、重點、難點

  1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題.

  2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題.

  3.難點的突破方法:

  三、課堂引入

  創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.

  四、例習(xí)題分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名詞;

 、埔李}意畫出圖形;

 、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

 、纫驗242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

 、伞螾RS=∠QPR—∠QPS=45°.

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

  例2(補充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

 、圃O(shè)未知數(shù)列方程,求出三角形的'三邊長5、12、13;

 、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

  解略.

  本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

八年級數(shù)學(xué)教案 篇4

  一、創(chuàng)設(shè)情境

  在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.

  問題1如圖是某地一天內(nèi)的氣溫變化圖.

  看圖回答:

  (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

  (2)這一天中,最高氣溫是多少?最低氣溫是多少?

  (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

  解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

  (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

  (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

  從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

  二、探究歸納

  問題2銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

  觀察上表,說說隨著存期x的增長,相應(yīng)的.年利率y是如何變化的.

  解隨著存期x的增長,相應(yīng)的年利率y也隨著增長.

  問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對應(yīng)的數(shù)值:

  觀察上表回答:

  (1)波長l和頻率f數(shù)值之間有什么關(guān)系?

  (2)波長l越大,頻率f就________.

  解(1)l與f的乘積是一個定值,即

  lf=300000,

  或者說.

  (2)波長l越大,頻率f就 越小 .

  問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

  利用這個關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

  由此可以看出,圓的半徑越大,它的面積就_________.

  解S=πr2.

  圓的半徑越大,它的面積就越大.

  在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

  上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關(guān).一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級數(shù)學(xué)教案 篇5

  知識結(jié)構(gòu):

  重點與難點分析:

  本節(jié)內(nèi)容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

  本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時候,經(jīng);煜,幫助學(xué)生認(rèn)識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點.另外本節(jié)的文字?jǐn)⑹鲱}也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

  教法建議:

  本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:

  (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

  學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。

  (2)采用“類比”的學(xué)習(xí)方法,獲取知識。

  由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c撥引導(dǎo)。

  (3)總結(jié),形成知識結(jié)構(gòu)

  為了使學(xué)生對本節(jié)課有一個完整的認(rèn)識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個三角形是等邊三角形?

  一.教學(xué)目標(biāo):

  1.使學(xué)生掌握等腰三角形的判定定理及其推論;

  2.掌握等腰三角形判定定理的運用;

  3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;

  4.通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

  5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.

  二.教學(xué)重點:等腰三角形的判定定理

  三.教學(xué)難點:性質(zhì)與判定的區(qū)別

  四.教學(xué)用具:直尺,微機

  五.教學(xué)方法:以學(xué)生為主體的討論探索法

  六.教學(xué)過程:

  1、新課背景知識復(fù)習(xí)

  (1)請同學(xué)們說出互逆命題和互逆定理的概念

  估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

  (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?

  啟發(fā)學(xué)生用自己的`語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

  1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

  (簡稱“等角對等邊”).

  由學(xué)生說出已知、求證,使學(xué)生進一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導(dǎo)學(xué)生分析:

  聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

  (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

  (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

  2.推論1:三個角都相等的三角形是等邊三角形.

  推論2:有一個角等于60°的等腰三角形是等邊三角形.

  要讓學(xué)生自己推證這兩條推論.

  小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應(yīng)用舉例

  例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

  分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時,常?紤]應(yīng)用外角的兩個特性①它與相鄰的內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學(xué)生板演即可.

  補充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結(jié)BD,在 中, (已知)

  (等邊對等角)

  (已知)

  即

  (等教對等邊)

  小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

  證明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結(jié):

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習(xí)

  教材 P.75中1、2、3.

  八.作業(yè)

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板書設(shè)計