關于人教版六年級下冊數(shù)學教案集合6篇
作為一名教學工作者,就有可能用到教案,教案是教學藍圖,可以有效提高教學效率。我們該怎么去寫教案呢?以下是小編精心整理的人教版六年級下冊數(shù)學教案6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
人教版六年級下冊數(shù)學教案 篇1
教學內容:
成數(shù)(課本第9頁例2)
教學目標:
1、結合具體事物,經歷認識成數(shù),解答有關成數(shù)的實際問題的過程。。
2、對成數(shù)問題有好奇心,獲得運用已有知識解決問題的成功體驗。
教學重點:
理解成數(shù)的意義。
教學難點:
解決解答有關成數(shù)的實際問題。
教學過程:
一、復習
1、填空
、偎恼凼鞘种 ),改寫成百分數(shù)是( )。
、诹凼鞘种 ),改寫成百分數(shù)是( )。
③七五折是十分之( ),改寫成百分數(shù)是( )。
2、商店里花了56元錢買了一條牛仔褲,因為那兒的.牛仔褲正在打七折銷售,這條牛仔褲原價多少元?
二、創(chuàng)設情境,導入新課
同學們有聽農民們說:今年我家的稻谷比去年增產二成,我家的桂皮曬干后只有五成等嗎?他們說的是什么意思呢?原來商業(yè)上與百分數(shù)有關的術語是折扣,而農業(yè)上與百分數(shù)有關的術語就是成數(shù)。滲透環(huán)保教育
三、探究體驗
(一)成數(shù)表示一個數(shù)是另一個數(shù)的十分之幾,通稱幾成。例如一成就是十分之一,改寫成百分數(shù)就是10%。
1、讓學生嘗試把二成及三成五改寫成百分數(shù)。
2、讓學生說說除了農業(yè)上使用成數(shù),還有哪些行業(yè)是使用了成數(shù)的知識。
3、練習:將下列成數(shù)改寫成百分數(shù)。
二成=( )%; 四成五=( )%; 七成二=( )%。
。ǘ┙虒W例2
1、出示例題,某工廠去年用電350萬千瓦時,今年比去年節(jié)電二成五,今年用電多少萬千瓦時?
2、讓學生讀題,分析題意,今年比去年節(jié)電二成五怎么理解?是以哪個量為單位1?
3、學生嘗試獨立分析問題,解決問題,教師巡堂了解情況,指導個別學習有困難的學生。
4、理解節(jié)電二成五就是比去年節(jié)省了百分之二十五的意思。從而根據求一個數(shù)的百分之幾是多少的解法列出算式和解答。
350(1-25%)=262.5(萬千瓦時)
或者引導學生列出
350-35025%=262.5(萬千瓦時)
四、鞏固練習
1、三成=( )%; 五成六=( )%; 八成三=( )%;
2、第9頁做一做
3、解決問題
。1)某鄉(xiāng)去年的水稻產量是1500噸,今年因為受到天氣災害的影響水稻產量只有去年的八成五,今年的水稻產量是多少噸?
(2)鼎湖山20xx年累計旅游人次是18萬人次,20xx年累計旅游人次比20xx年增加一成五,20xx年累計旅游人次是多少?(出外玩要做好垃圾分類)
(3)我校20xx年的在校生人數(shù)有820人,比20xx年在校生人數(shù)減少了二成,我校20xx年的在校生人數(shù)是多少?
(4)某鞋廠20xx年的年產量為30萬雙,20xx年年產量比20xx年增加了一成六,20xx年年產量又比20xx年增加一成,這個鞋廠20xx年的年產量是多少萬雙?
五、課堂總結
這節(jié)課你收獲了什么?
人教版六年級下冊數(shù)學教案 篇2
教學內容:
比較正數(shù)和負數(shù)的大小。
教學目的:
1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。
2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結構的初步構建。
教學重、難點:
負數(shù)與負數(shù)的比較。
教學過程:
一、復習:
1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
。ㄒ唬┙虒W例3:
1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)
2、出示例3:
。1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
。3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數(shù)對應起來。
。4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。
。6)引導學生觀察:
A、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
B、在數(shù)軸上除了可以表示整數(shù)外,還可以表示分數(shù)和小數(shù)。請學生在數(shù)軸上分別找到1.5和-1.5對應的點。如果從起點分別到1.5和-1.5處,應如何運動?
。7)練習:做一做的第1、2題。
。ǘ┙虒W例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學生比較“8〉6,但是-8〈-6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。
6、總結:負數(shù)比0小,所有的`負數(shù)都在0的左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。
7、練習:做一做第3題。
三、鞏固練習
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是 攝氏度。
四、全課總結
。1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
。2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。
第二課教學反思:
許多教師認為“負數(shù)”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握。可如果深入鉆研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數(shù)軸上表示數(shù)要求的拓展。
數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1.5。建議此處教師補充要求學生表示出“+1.5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1.5和—1.5絕對值相等。
同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數(shù)加減法
教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數(shù)知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))
例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小!奔词褂袑W生在比較—8和—6大小時是用“8>6,所以—8。
人教版六年級下冊數(shù)學教案 篇3
一、學習目標
。ㄒ唬⿲W習內容
《義務教育教科書數(shù)學》(人教版)六年級下冊第五單元第68~69頁的例1、2!俺閷显怼笔且活愝^為抽象和艱澀的數(shù)學問題,對全體學生而言具有一定的挑戰(zhàn)性。為此,教材選擇了一些常見的、熟悉的事物作為學習內容,經歷將具體問題“數(shù)學化”的過程。
。ǘ┖诵哪芰
經歷將具體問題“數(shù)學化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。
(三)學習目標
1.理解“鴿巢原理”的基本形式,并能初步運用“鴿巢原理”解決相關的實際問題或解釋相關的現(xiàn)象。
2.通過操作、觀察、比較、說理等數(shù)學活動,經歷鴿巢原理的形成活動,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。
(四)學習重點
了解簡單的鴿巢問題,理解“總有”和“至少”的含義。
(五)學習難點
運用“鴿巢原理”解決相關的實際問題或解釋相關的現(xiàn)象。
(六)配套資源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
。ㄒ唬┱n堂設計
1.談話導入
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請一位同學任意抽5張,不要讓我看到你抽的是什么牌。但是老師卻知道,其中至少有兩張牌是同種花色的,再找一個學生再次證明。
師:看來我兩次都猜對了。謝謝你們。老師為什么能料事如神呢?到底有什么秘訣呢?學習完這節(jié)課以后大家就知道了。
2.問題探究
(1)呈現(xiàn)問題,引出探究
出示例1:小明說“把4支鉛筆放進3個筆筒里。不管怎么放,總有一個筆筒里至少放進2支鉛筆”,他說得對嗎?請說明理由。
師:“總有”是什么意思?“至少”有2支是什么意思?
學生自由發(fā)言。
預設:一定有
不少于兩只,可能是2支,也可能是多于2支。
就是不能少于2支。
。2)體驗探究,建立模型
師:好的,看來大家已經理解題目的意思了。那么把4支鉛筆放進3個筆筒里,可以怎樣放?有幾種不同的擺法?(我們用小棒和紙杯分別表示鉛筆和筆筒)請大家擺擺看,看有什么發(fā)現(xiàn)?
小組活動:學生思考,擺放。
、倜杜e法
師:大部分同學都擺完了,誰能說說你們是怎么擺的。能不能邊擺邊給大家說。
預設1:可以在第一個筆筒里放4支鉛筆,其它兩個空著。
師:這種放法可以記作:(4,0,0),這4支鉛筆一定要放在第一個筆筒里嗎?
(不一定,也可能放在其它筆筒里。)
師:對,也可以記作(0,4,0)或者(0,0,4),但是,不管放在哪個筆筒里,總有一個筆筒里放進4支鉛筆。還可以怎么放?
預設2:第一個筆筒里放3支鉛筆,第二個筆筒里放1支,第三個筆筒空著。
師:這種放法可以記作(3,1,0)
師:這3支鉛筆一定要放在第一個筆筒里嗎?
(不一定)
師:但是不管怎么放——總有一個筆筒里放進3支鉛筆。
預設3:還可以在第一個筆筒里放2支,第二個筆筒里也放2支,第三個筆筒空著,記作(2,2,0)。
師:這2支鉛筆一定要放在第一個和第二個筆筒里嗎?還可以怎么記?
預設:也可能放在第三個筆筒里,可以記作(2,0,2)、(0,2,2)。
預設4:還可以(2,1,1)
或者(1,1,2)、(1,2,1)
師:還有其它的放法嗎?
。]有了)
師:在這幾種不同的放法中,裝得最多的那個筆筒里要么裝有4支鉛筆,要么裝有3支,要么裝有2支,還有裝得更少的情況嗎?(沒有)
師:這幾種放法如果用一句話概括可以怎樣說?
(裝得最多的筆筒里至少裝2支。)
師:裝得最多的那個筆筒一定是第一個筆筒嗎?
。ú灰欢,哪個筆筒都有可能。)
【設計意圖:在理解題目要求的基礎上,通過操作活動,用畫圖和數(shù)的分解來表示上述問題的結果,更直觀。再通過對“總有”“至少”的意思的單獨說明,讓學生更深入地理解“不管怎么放,總有一個鉛筆盒里至少有2支鉛筆”這句話!
②假設法
師:剛才我們研究了在所有放法中放得最多的筆筒里至少放進了幾支鉛筆。怎樣能使這個放得最多的筆筒里盡可能的少放?
預設:先把鉛筆平均放,然后剩下的再放進其中一個筆筒里。
師:“平均放”是什么意思?
預設:先在每個筆筒里放一支鉛筆,還剩一支鉛筆,再隨便放進一個筆筒里。
師:為什么要先平均分?
學生自由發(fā)言。
引導小結:因為這樣分,只分一次就能確定總有一個筆筒至少有幾支筆了。
師:好!先平均分,每個筆筒中放1支,余下1支,不管放在哪個筆筒里,一定會出現(xiàn)總有一個筆筒里至少有2支鉛筆。
師:這種思考方法其實是從最不利的情況來考慮,先平均分,每個筆筒里都放一支,就可以使放得較多的這個筆筒里的鉛筆盡可能的'少。這樣,就能很快得出不管怎么放,總有一個筆筒里至少放進2支鉛筆。我們可以用算式把這種想法表示出來。
【設計意圖:讓學生自己通過觀察比較得出“平均分”的方法,將解題經驗上升為理論水平,進一步強化方法、理清思路!
。3)提升思維,建立模型
、偌由罡形
師:如果把5支筆放進4個筆筒里呢?大家討論討論。
預設:5支鉛筆放在4個筆筒里,先平均分,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:把7支筆放進6個筆筒里呢?還用擺嗎?
學生自由發(fā)言。
師:把10支筆放進9個筆筒里呢?把100支筆放進99個筆筒里呢?
師:你發(fā)現(xiàn)了什么?
預設:我發(fā)現(xiàn)鉛筆的支數(shù)比筆筒數(shù)多1,不管怎么放,總有一個筆筒里至少有2支鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?
學生自由發(fā)言。
師:你們太了不起了!
師:難道這個規(guī)律只有在鉛筆的支數(shù)比筆筒數(shù)多1的情況下才成立嗎?你認為還有什么情況?
練一練:
師:我們來看這道題“5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子,為什么?”
師:說說你的想法。
師:由此看來,只要分的物體比抽屜的數(shù)量多,就總有一個抽屜里至少放進2個物體。這就是最簡單的鴿巢原理!景鍟n題】
介紹狄利克雷:
師:鴿巢原理最先是由19世紀的德國數(shù)學家狄利克雷提出來應用于解決問題的,后來人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫狄利克雷原理,也叫抽屜原理。
、诮⒛P
出示例2:一位同學學完了“鴿巢原理”后說:把7本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有3本書。他說得對嗎?
學生獨立思考、討論后匯報:
師:怎樣用算式表示我們的想法呢?生答,板書如下。
7÷3=2本……1本(2+1=3)
師:如果有10本書會怎么樣能?會用算式表示嗎?寫下來。
出示:
把10本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
10÷3=3本……1本(3+1=4)
師:觀察板書你有什么發(fā)現(xiàn)?
預設:我發(fā)現(xiàn)“總有一個抽屜里至少有2本”,只要用“商+1”就可以得到。
師:那如果把8本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?請大家算一算。
學生討論,匯報:
8÷3=2……22+1=3
8÷3=2……22+2=4
師:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?在小組里進行研究、討論。
師:認真觀察,你認為“抽屜里至少有幾本書”或“鴿籠里至少有幾只鴿子”可能與什么有關?
預設:我認為根“商”有關,只要用“商+1”就可以得到。
師:我們一起來看看是不是這樣(引導學生再觀察幾個算式)!果然是只要用“商+1”就可以了。
引導總結:我們把要分的物體數(shù)量看做a,抽屜的個數(shù)看做n,如果滿足【a÷n=b……c(c≠0)】,那么不管怎樣放,總有一個抽屜里至少放(b+1)本書。這就是抽屜原理的一般形式。
鴿巢原理可以廣泛地運用于生活中,來解決一些簡單的實際問題。解決這類問題時要注意把誰看做“抽屜”。
【設計意圖:借助直觀操作和假設法,將問題轉化為“有余數(shù)的除法”的形式?梢允箤W生更好地理解“抽屜原理”的一般思路,經歷將具體問題“數(shù)學化”的過程,初步形成模型思想,發(fā)展抽象能力、推理能力和應用能力。考查目標1、2】
3.鞏固練習
(1)學習了“鴿巢原理”,我們再回到課前的“撲克牌”游戲,你現(xiàn)在能解釋一下嗎?(出示課件)學生思考,討論。
。2)第69頁的做一做第1、2題。
4.全課總結
師:通過這節(jié)的學習,你有什么收獲?
小結:今天這節(jié)課我們一起研究了鴿巢原理,也叫抽屜原理,解決抽屜原理問題關鍵就是找準物體和抽屜,在一些復雜的題中,還需要我們去制造抽屜。
(三)課時作業(yè)
1.一個小組共有13名同學,其中至少有幾名同學同一個月出生?
答案:2名。
解析:把1—12月看作是12個抽屜,13÷12=1…11+1=2【考查目標1、2】
2.希望小學籃球興趣小組的同學中,最大的12歲,最小的6歲,最少從中挑選幾名學生,就一定能找到兩個學生年齡相同。
答案:8名。
解析:從6歲到12歲一共有7個年齡段,即6歲、7歲、8歲、9歲、10歲、11歲、12歲。用7+1=8(名)【考查目標1、2】
第二課時鴿巢原理
中原區(qū)汝河新區(qū)小學師芳
一、學習目標
。ㄒ唬⿲W習內容
《義務教育教科書數(shù)學》(人教版)六年級下冊教材第70頁例3。本例是“鴿巢原理”的具體應用,也是運用“鴿巢原理”進行逆向思維的一個典型例子。要解決這個問題,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”,這樣就把“摸球問題”轉化為“抽屜問題”。
。ǘ┖诵哪芰
在理解鴿巢原理的基礎上,利用轉化的思想,把新知轉化為鴿巢問題,提高分析和推理的能力。
(三)學習目標
1.進一步理解“抽屜原理”,運用“抽屜原理”進行逆向思維,解決實際問題,體會轉化思想。
2.經歷運用“抽屜原理”解決問題的過程,體驗觀察猜想,實踐操作的學習方法,提高分析和推理的能力。
。ㄋ模⿲W習重點
引導學生把具體問題轉化為“抽屜原理”。
。ㄎ澹⿲W習難點
找出“抽屜”有幾個,再應用“抽屜原理”進行反向推理。
(六)配套資源
實施資源:《鴿巢原理》名師教學課件
二、學習設計
(一)課堂設計
1.情境導入
師:同學們,你們喜歡魔術嗎?今天老師給你們表演一個怎么樣?看,這是一副撲克牌,去掉兩張王牌,還剩下52張,請同學們任意挑出5張。(讓5名學生抽牌)好,見證奇跡的時刻到了!你們手里的牌至少有2張是同花色的。
師:神奇吧!你們想不想表演一個呢?
師:現(xiàn)在老師這里還是剛才這副牌,請你抽牌,至少抽多少張牌才能保證至少有2張牌的點數(shù)相同呢?
在學生抽的基礎上揭示課題。教師:這節(jié)課我們學習利用“鴿巢原理”解決生活中的實際問題。(板書課題:鴿巢原理)
2.探究新知
。1)學習例3
、俨孪
出示例3:盒子里有同樣大小的紅球和藍球各4個,要想摸出的球一定有2個同色的,至少要摸出幾個球?
預設:2個、3個、5個…
、隍炞C
師:我們的猜想是不是正確呢?我們可以用畫一畫、寫一寫的方法來說明理由,并把驗證的過程進行整理。
可以用表格進行整理,課件出示空白表格:
學生獨立思考填表,小組交流。
全班匯報。
匯報時,指名按猜測的不同情況逐一驗證,說明理由,看看解決這個問題是否有規(guī)律可循。
課件匯總,思考:從這里你能發(fā)現(xiàn)什么?
教師:通過驗證,說說你們得出什么結論。
小結:盒子里有同樣大小的紅球和藍球各4個。想要摸出的球一定有2個同色的,最少要摸3個球。
、坌〗Y
師:為什么球的個數(shù)一定要比抽屜數(shù)多?而且是多1呢?
預設:球有兩種顏色,就是兩個抽屜,從最不利的情況考慮摸2個球都不同色,就必須多摸一個,所以球一定要比抽屜數(shù)多1。其實摸4個球、5個球或者更多球,都能保證一定有2個球同色,但問題中要求摸的球數(shù)必須“至少”,所以摸3個球就夠了。
師:說得好!運用學過的知識、逆推的方法說明了“只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色”。這一結論是正確的。
板書:只要摸出的球比球的顏色種數(shù)至少多1,就能保證有2個球同色;蛘哒f只要物體數(shù)比抽屜數(shù)至少多1,就能保證有一個抽屜至少放2個物體。
(2)引導學生把具體問題轉化成“抽屜原理”。
師:生活中像這樣的例子很多,我們不能總是猜測或動手試驗,能不能把這道題與前面講的“抽屜原理”聯(lián)系起來思考呢?
思考:①摸球問題與“抽屜原理”有怎樣的聯(lián)系?
、趹摪咽裁纯闯伞俺閷稀?有幾個“抽屜”?要分別放的東西是什么?
學生討論,匯報結果,教師講評:因為有紅、藍兩種顏色的球,可以把兩種“顏色”看成兩個“抽屜”,“同色”就意味著“同一個抽屜”。這樣把“摸球問題”轉化成“抽屜問題”,即“只要分的物體比抽屜多1,就能保證有一個抽屜至少有2個同色球”。
從最特殊的情況想起,假設兩種顏色的球各拿了1個,也就是在兩個抽屜里各拿了1個球,不管從哪個抽屜里再拿1個球,都有2個球是同色的。假設至少摸a個球,即a÷2=1……b,當b=1時,a就最小。所以一次至少應拿出1×2+1=3個球,就能保證有2個球同色。
結論:要保證摸出的球有兩個同色,摸出的球數(shù)至少要比抽屜數(shù)多1。
3.鞏固練習
。1)完成教材第70頁“做一做”第1題。
。2)完成教材第70頁“做一做”第2題。
4.課堂總結
師:這節(jié)課你學到了什么知識?談談你的收獲和體驗。
。ㄈ┱n時作業(yè)
1.有黑色、白色、藍色、紅色手套各10只(不分左、右手),至少要拿出多少只(拿的時候不看顏色),才能在拿出的手套中,一定有兩只不同顏色的手套?
答案:5只。
解析:4個顏色相當于4個抽屜,保證一定有兩只不同的顏色,相當于分的物體個數(shù)比抽屜多1!究疾槟繕1、2】
2.一個魚缸里有很多條魚,共有5個品種。至少撈出多少條魚,才能保證有4條魚的品種相同?
答案:16條。
解析:5個品種相當于5個抽屜,保證有4條魚品種相同,所放物品的個數(shù)是:5×3+1=16。【考查目標1、2】
人教版六年級下冊數(shù)學教案 篇4
一、游戲導入
1、游戲:我們來玩?zhèn)游戲輕松一下,游戲叫做《我反 我反 我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。
①向上看(向下看)②向前走200米(向后走200米)③電梯上升15層(下降15層)。
2、下面我們來難度大些的,看誰反應最快。
、傥以阢y行存入了500元(取出了500元)。②知識競賽中,五(1)班得了20分(扣了20分)。
、10月份,學校小賣部賺了500元。(虧了500元)。④零上10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游, 11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預報。(天氣預報片頭)
二、教學例1
1、認識溫度計,理解用正負數(shù)來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現(xiàn)在你能看出南京是多少攝氏度嗎? (是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
。2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結合課件,突出上海的氣溫在零刻度線以上)。
。3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
。4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
、 上海的氣溫比0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的'4℃也就是+4℃。(板書)
負號能不能省略不寫?為什么?
② 北京的氣溫比0℃低,是零下4攝氏度。我們可以用-4℃來表示零下4攝氏度(板書-4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
。5)小結:通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數(shù)可以來表示零上溫度,用-4這樣的數(shù)可以表示零下溫度。
2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預報,將你聽到城市的最低和最高溫度記錄下來。
4、小結:通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學習珠峰、吐魯番盆地的海拔表達方法
1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關的。最近經國家測繪局公布了珠峰的最新海拔高度。老師把有關網頁帶來了。(課件出現(xiàn)網頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態(tài)地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的海拔圖。(動態(tài)演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導學生交流,回答珠穆朗瑪峰比海平面高8844.43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
。1)交流:珠穆朗瑪峰的海拔可以記作:+8844.43米或8844.43米。
吐魯番盆地的海拔可以記作:-155米。(板書)
。2)小小結:以海平面為界線,+8844.43米或8844.43米這樣的數(shù)可以表示海平面以上的高度,-155米這樣的數(shù)可以表示海平面以下的高度。
人教版六年級下冊數(shù)學教案 篇5
教學內容:
教材第15~16頁的例4和第16頁的試一試、練一練,完成練習三第1~3題。
教學目標:
1.結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。
2.經歷類比猜想驗證說明的探索圓柱體積的計算方法的進程,掌握圓柱體的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3.引導學生探索和解決問題,滲透、體驗知識間相互轉化的思想方法。
重點難點:
掌握圓柱體積公式的推導過程。
教學資源:
PPT課件 圓柱等分模型
教學過程:
一、聯(lián)系舊知,設疑激趣,導入新課。
1.呈現(xiàn)例4中長方體、正方體和圓柱的直觀圖。
2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的體積?
啟發(fā):大家想不想知道圓柱的體積怎樣計算?猜想一下:圓柱體積的大小與什么有關?怎么算?
3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計算公式。
二、動手操作,探索新知,教學例4
1.觀察比較
引導學生觀察例4的三個立體,提問
、胚@三個立體的底面積和高都相等,它們的體積有什么關系?
、崎L方體和正方體的體積一定相等嗎?為什么?
⑶圓柱的體積與長方體和正方體的體積可能相等嗎?為什么?
2.實驗操作
、耪勗挘捍蠹叶颊J為圓柱的體積與長方體、正方體的體積可能是相等的,而且都等于底面積乘高。那用什么辦法驗證呢?讓學生在小組中說說自己的想法。
提醒:圓的面積公式是怎么推導出來的?我們能不能將圓柱轉化成長方體呢?
、铺岢鲆螅耗隳芟朕k法把圓柱轉化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準備好的.圓柱,操作一下。
、怯懻摻涣鳎喝绻褕A柱的底面平均分成16份,切開后能否拼成一個近似的長方體?
操作教具,讓學生觀察。
引導想像:如果把底面平均分的份數(shù)越來越多,結果會怎么樣?
演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學生清楚地認識到:拼成的立體會越來越接近長方體。
3.推出公式
、盘釂枺浩闯傻拈L方體與原來的圓柱有什么關系?
指出:長方體的體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。
、葡胍幌耄涸鯓忧髨A柱的體積?為什么?
根據學生的回答小結并板書圓柱的體積公式
圓柱的體積=底面積高
、且龑в米帜腹奖硎緢A柱的體積公式:V=sh
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
三、分層練習,發(fā)散思維,教學試一試
⑴讓學生列式解答后交流算法。
、朴懻摚褐朗裁礂l件就一定能算出圓柱的體積了?分別怎么算?
。╯和h,r和h,d和h,c和h)
四、鞏固拓展練習
1.做練一練第1題。
、耪f一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?
、聘髯跃毩,并指名板演。
⑶對照板演,說說計算過程。
2.做練一練第2題。
已知底面周長和高,該怎么求它的體積呢?引導學生根據底面周長求出底面積。
五、小結
這節(jié)課我們學習了什么?有哪些收獲?還有什么疑問?
六、作業(yè)
練習三第1~3題。
人教版六年級下冊數(shù)學教案 篇6
第1課時
圓柱的認識
教學內容
人教版六年級下冊教材第17頁圓柱的認識、第18頁例1和第19頁例2。
內容簡析
圓柱的認識:通過觀察物體的形狀,初步認識圓柱。
例1:通過觀察圓柱,認識圓柱的側面、底面和高。
例2:通過觀察圖形,掌握圓柱的側面展開圖。
教學目標
1.認識圓柱的側面、底面和高;認識圓柱的側面展開圖,理解圓柱側面展開圖與圓柱的關系。
2.通過觀察、發(fā)現(xiàn)、交流,讓學生自主探究,掌握學習方法。
3.培養(yǎng)學生觀察、比較和判斷的能力,以及發(fā)現(xiàn)問題、分析問題和解決問題的能力。
教學重難點
重點:使學生掌握圓柱的基本特征,理解圓柱側面展開圖與圓柱的關系。
難點:圓柱側面展開圖與圓柱的關系,建立圓柱的空間觀念。
教法與學法
1.在教法上,應加強直觀演示和操作,利用多媒體課件從實物中抽象出圓柱的圖形,幫助學生建立圓柱的表象,再讓學生通過觀察和操作,發(fā)現(xiàn)并總結出圓柱的特征。
2.在學法上,學生把觀察和動手操作相結合,通過摸一摸、量一量、畫一畫等實踐操作活動認識圓柱的特征。本節(jié)課也應以學生自主學習為主,加強小組合作與交流。
承前啟后鏈
教學過程
一、情景創(chuàng)設,導入課題
實物展示法:
教師拿出一個做好的圓柱模型展示給學生,讓學生摸一摸、看一看,初步感知圓柱;緊接著讓學生觀察這個圓柱的特征,觀察圓柱的組成。(學生觀察并獨立思考)
學生1:圓柱由三部分組成:兩個圓和一個曲面。
學生2:兩個圓的面積相等。
學生3:……
教師表揚并鼓勵學生的回答!酒肺:用觀察實物的方式導入,讓學生看到了真實的物體,使學生對圓柱的印象更加深刻,同時用動作摸一摸更能吸引學生的學習興趣!
課件展示法:
1.課件出示“旋轉門”的畫面,引導聯(lián)想:你看到了什么?想到了什么?(圓柱的形成)
我看到了旋轉門,想到了它轉起來會形成一個圓柱。
2.課件出示:比薩斜塔、客家圍屋、立柱、蠟燭、水杯等。課件抽出圓柱的幾何模型。
今天我們一起來研究圓柱。(板書課題)【品析:課件展示的效果是使圖形更加形象具體,學生一目了然,對于圖形的認識和理解更加準確和深刻,有助于學生對于圓柱的學習和研究!
動手操作法:
讓學生拿出所帶的硬紙板、直尺、剪刀、圓規(guī)等學具,小組合作,教師引導動手制作圓柱的模型。
小組展示制作成果,教師給予評價!酒肺:親自動手操作制作圓柱模型不僅使學生更好地認識圓柱,而且讓學生有一種喜悅的成就感。同時,對下面觀察總結圓柱的組成和特征打下堅實的基礎。】
二、師生合作,探究新知
◎教學例1
(1)整體感知圓柱
、僬務剤A柱,大家知道什么是圓柱嗎?請同學說說你理解的圓柱。
、谡艺覉A柱,請同學找出生活中圓柱形狀的物體。
引導學生閱讀觀察教材第17頁幾個圓柱物體的圖形,認識圓柱。
(2)教學例1:
出示教材第18頁例1:觀察一個圓柱形的物體,看一看它是由哪幾個部分組成的`,有什么特征。
①認識圓柱的面。
師:請同學摸摸自己手中圓柱的表面,說說你發(fā)現(xiàn)了什么。
師:指導看書,再次觀察例1中的圖形,引導歸納。(上、下兩個面叫作底面,它們是完全相同的兩個圓;圓柱的曲面叫側面。)
、谡J識圓柱的高
引導學生觀察例1中的圓柱,根據圖形上的提示認識圓柱的高,再根據例1中的高找到自己手中圓柱的高。結合教材回答什么叫圓柱的高。(板書:圓柱兩個底面之間的距離叫作高)
討論交流:圓柱的高的特點。
歸納小結并板書:圓柱的高有無數(shù)條,高的長度都相等。
總結:圓柱是由3個面圍成的。圓柱的上、下兩個面叫作底面。圓柱周圍的面(上、下底面除外)叫作側面。圓柱的兩個底面之間的距離叫作高。
【品析:此教學環(huán)節(jié)先運用提問交流的方式引出認識圓柱,再聯(lián)系生活實物模型,通過讓學生動手操作觀察自己所制作的圓柱模型來認識圓柱的組成和特征,使學生記憶更加深刻。】
◎教學例2:圓柱的側面展開
(1)動手操作:請同學分小組拿出有商標紙的圓柱形實物,把商標紙剪開,再打開,觀察商標紙的形狀。
反饋后討論:展開后得到長方形和正方形的是怎樣剪的?展開后得到平行四邊形的是怎樣剪的?
(2)操作探究:展開的長方形的長和寬與圓柱的關系。
師生一起把展開的長方形還原成圓柱的側面,再展開,在重復操作中觀察。
歸納:這個長方形的長就是圓柱底面的周長,寬就是圓柱的高。
(3)延伸發(fā)現(xiàn):展開的平行四邊形的底和高及正方形的邊長與圓柱的關系。
(4)引導學生自主閱讀并觀察教材第19頁例2。
總結:長方形的長就是圓柱底面的周長,寬就是圓柱的高。
【品析:此環(huán)節(jié)在探索學習的過程中,教師為學生創(chuàng)設動手實踐的機會,給學生足夠的時間進行操作與思考,讓學生獲得豐富的活動體驗,讓學生動手操作推導出圓柱側面展開后是一個長方形,長方形的長等于底面周長,寬等于圓柱的高。通過這樣的活動體驗,讓學生經歷學習數(shù)學的過程。】
三、反饋質疑,學有所得
在認識了圓柱,學習完例1、例2的基礎上,讓學生及時消化吸收,教師提出質疑,師生共同系統(tǒng)整理。
質疑一:圓柱是由幾部分組成的?圓柱有什么特征?
師生共同總結:圓柱是由3個面圍成的。圓柱的上、下兩個面叫作底面。圓柱周圍的面(上、下底面除外)叫作側面。圓柱的兩個底面之間的距離叫作高。
質疑二:圓柱的側面展開后是什么形狀?長方形的長、寬與圓柱有什么關系?
師生共同總結:圓柱側面展開后得到一個長方形。長方形的長就是圓柱底面的周長,寬就是圓柱的高。
四、課末小結,融會貫通
同學們,今天我們認識了圓柱,學習了圓柱的基本特征和圓柱的側面展開圖,你能說說你的收獲嗎?找兩個學生暢談本課時的收獲,教師對其進行補充完成課堂的小結。
師生共同總結:
1.圓柱的組成及特點:圓柱是由3個面組成的。圓柱的上、下兩個面叫作底面;圓柱周圍的面(上、下面除外)叫作側面;圓柱的兩個底面之間的距離叫作高。圓柱的底面都是圓,并且大小一樣。圓柱的側面是一個曲面。
2. 圓柱的側面展開圖:圓柱的側面沿高展開是一個長方形,長方形的長等于圓柱底面的周長,寬等于圓柱的高。銜接下一節(jié)課的學習內容,給大家留一個思考的話題:
什么叫作圓柱的表面積?包括哪幾個面?
五、教海拾遺,反思提升
回味課堂,發(fā)現(xiàn)亮點之處:兩次質疑的討論使學生的學習進入了二次消化吸收的過程,這次內化把圓柱的基本特征和圓柱的側面展開圖的有關知識真正掌握了。
反思過程,有待改進之處:在教學中,應多給予學生動手實踐的機會,給學生足夠的時間進行操作和思考的同時,教師應進行相應的提問,這樣學生學習的印象才能更深刻,學習的知識才會更扎實。
【人教版六年級下冊數(shù)學教案】相關文章:
人教版六年級下冊數(shù)學教案06-17
人教版六年級下冊數(shù)學教案03-14
人教版六年級下冊數(shù)學教案06-30
人教版六年級下冊數(shù)學教案6篇11-18
人教版六年級下冊數(shù)學教案7篇11-19
人教版六年級下冊數(shù)學教案5篇01-11