国产在线导航,欧美日本中文,黄色在线观看网站永久免费乱码,chinese国产在线视频,亚洲欧洲第一视频,天天做人人爱夜夜爽2020毛片,亚洲欧美中文字幕在线网站

八年級數(shù)學(xué)教案

時間:2022-08-23 01:01:39 八年級數(shù)學(xué)教案 我要投稿

關(guān)于八年級數(shù)學(xué)教案模板錦集5篇

  作為一名老師,時常要開展教案準備工作,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那么應(yīng)當如何寫教案呢?下面是小編幫大家整理的八年級數(shù)學(xué)教案5篇,歡迎閱讀與收藏。

關(guān)于八年級數(shù)學(xué)教案模板錦集5篇

八年級數(shù)學(xué)教案 篇1

  知識要點

  1、函數(shù)的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,

  相應(yīng)地就確定了一個y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、一次函數(shù)的概念:若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當b=0 時,稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

  3、正比例函數(shù)y=kx的性質(zhì)

  (1)、正比例函數(shù)y=kx的圖象都經(jīng)過

  原點(0,0),(1,k)兩點的一條直線;

  (2)、當k0時,圖象都經(jīng)過一、三象限;

  當k0時,圖象都經(jīng)過二、四象限

  (3)、當k0時,y隨x的增大而增大;

  當k0時,y隨x的增大而減小。

  4、一次函數(shù)y=kx+b的性質(zhì)

  (1)、經(jīng)過特殊點:與x軸的交點坐標是 ,

  與y軸的交點坐標是 .

  (2)、當k0時,y隨x的增大而增大

  當k0時,y隨x的增大而減小

  (3)、k值相同,圖象是互相平行

  (4)、b值相同,圖象相交于同一點(0,b)

  (5)、影響圖象的兩個因素是k和b

 、賙的正負決定直線的方向

 、赽的正負決定y軸交點在原點上方或下方

  5.五種類型一次函數(shù)解析式的確定

  確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。

  (1)、根據(jù)直線的解析式和圖像上一個點的坐標,確定函數(shù)的解析式

  例1、若函數(shù)y=3x+b經(jīng)過點(2,-6),求函數(shù)的解析式。

  解:把點(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函數(shù)的解析式為:y=3x-12

  (2)、根據(jù)直線經(jīng)過兩個點的坐標,確定函數(shù)的解析式

  例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點B(2,7),

  求函數(shù)的表達式。

  解:把點A(3,4)、點B(2,7)代入y=kx+b,得

  ,解得:

  函數(shù)的解析式為:y=-3x+13

  (3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式

  例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x

  (小時)之間的關(guān)系.求油箱里所剩油y(升)與行駛時間x

  (小時)之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。

  (4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式

  例4、如圖2,將直線 向上平移1個單位,得到一個一次

  函數(shù)的圖像,那么這個一次函數(shù)的解析式是 .

  解:直線 經(jīng)過點(0,0)、點(2,4),直線 向上平移1個單位

  后,這兩點變?yōu)?0,1)、(2,5),設(shè)這個一次函數(shù)的解析式為 y=kx+b,

  得 ,解得: ,函數(shù)的解析式為:y=2x+1

  (5)、根據(jù)直線的對稱性,確定函數(shù)的解析式

  例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對稱,求k、b的值。

  例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對稱,求k、b的值。

  例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點對稱,求k、b的值。

  經(jīng)典訓(xùn)練:

  訓(xùn)練1:

  1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。

  (1)梯形的面積y與上底的長x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?

  (2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。

  訓(xùn)練2:

  1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).

  2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

  A.k1 B.k-1 C.k1 D.k為任意實數(shù).

  3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

  訓(xùn)練3:

  1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

  2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點坐標是____,與y軸的交點坐標是____.

  4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點,則k=_____;

  若y隨x的增大而增大,則k__________.

  5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

  訓(xùn)練4:

  1、 正比例函數(shù)的圖象經(jīng)過點A(-3,5),寫出這正比例函數(shù)的解析式.

  2、已知一次函數(shù)的圖象經(jīng)過點(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

  3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

  4、已知一次函數(shù)y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數(shù)的解析式。

  5、已知y-1與x成正比例,且 x=-2時,y=-4.

  (1)求出y與x之間的函數(shù)關(guān)系式;

  (2)當x=3時,求y的值.

  一、填空題(每題2分,共26分)

  1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .

  2、若直線 和直線 的交點坐標為 ,則 .

  3、一次函數(shù) 和 的圖象與 軸分別相交于 點和 點, 、 關(guān)于 軸對稱,則 .

  4、已知 , 與 成正比例, 與 成反比例,當 時 , 時, ,則當 時, .

  5、函數(shù) ,如果 ,那么 的取值范圍是 .

  6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設(shè)長增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).

  7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .

  8、已知一次函數(shù) 和 的圖象交點的橫坐標為 ,則 ,一次函數(shù) 的圖象與兩坐標軸所圍成的三角形的面積為 ,則 .

  9、已知一次函數(shù) 的圖象經(jīng)過點 ,且它與 軸的交點和直線 與 軸的交點關(guān)于 軸對稱,那么這個一次函數(shù)的解析式為 .

  10、一次函數(shù) 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .

  11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當 時, 是正比例函數(shù).

  12、 為 時,直線 與直線 的'交點在 軸上.

  13、已知直線 與直線 的交點在第三象限內(nèi),則 的取值范圍是 .

  二、選擇題(每題3分,共36分)

  14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

  15、若直線 與 的交點在 軸上,那么 等于( )

  A.4 B.-4 C. D.

  16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )

  17、直線 如圖5,則下列條件正確的是( )

  18、直線 經(jīng)過點 , ,則必有( )

  A.

  19、如果 , ,則直線 不通過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

  A. B. C. D.都不對

  21、如圖6,兩直線 和 在同一坐標系內(nèi)圖象的位置可能是( )

  圖6

  22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點B, ,則 的面積為( )

  A.4 B.5 C.6 D.7

  23、已知直線 與 軸的交點在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個數(shù)是( )

  A.1個 B.2個 C.3個 D.4個

  24、已知 ,那么 的圖象一定不經(jīng)過( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設(shè)甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )

  三、解答題(1~6題每題8分,7題10分,共58分)

  26、如圖8,在直角坐標系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標原點)的面積是10,若點A的橫坐標是 ,求這個一次函數(shù)解析式.

  27、一次函數(shù) ,當 時,函數(shù)圖象有何特征?請通過不同的取值得出結(jié)論?

  28、某油庫有一大型儲油罐,在開始的8分鐘內(nèi),只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.

  (1)試分別寫出這一段時間內(nèi)油的儲油量Q(噸)與進出油的時間t(分)的函數(shù)關(guān)系式.

  (2)在同一坐標系中,畫出這三個函數(shù)的圖象.

  29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標準收費;超過部分按每度0.50元計費.

  (1)設(shè)用電 度時,應(yīng)交電費 元,當 100和 100時,分別寫出 關(guān)于 的函數(shù)關(guān)系式.

  (2)小王家第一季度交納電費情況如下:

  月份 一月份 二月份 三月份 合計

  交費金額 76元 63元 45元6角 184元6角

  問小王家第一季度共用電多少度?

  30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當 =0.65時, =0.8.

  (1)求 與 之間的函數(shù)關(guān)系式;

  (2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]

  31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?

  32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)

  路程/千米 運費(元/噸、千米)

  甲庫 乙?guī)?甲庫 乙?guī)?/p>

  A地 20 15 12 12

  B地 25 20 10 8

  (1)設(shè)甲庫運往A地水泥 噸,求總運費 (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).

  (2)當甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?

八年級數(shù)學(xué)教案 篇2

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。

  本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。

  [教學(xué)目標]

  一、 知識與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡單的實際問題

  3學(xué)會簡單的合情推理與數(shù)學(xué)說理

  二、 過程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。

  三、 情感與態(tài)度目標

  通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

  四、 重點與難點

  1、探索和證明勾股定理

  2熟練運用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

  因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的.證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

八年級數(shù)學(xué)教案 篇3

  5 14.3.2.2 等邊三角形(二)

  教學(xué)目標

  掌握等邊三角形的性質(zhì)和判定方法.

  培養(yǎng)分析問題、解決問題的能力.

  教學(xué)重點

  等邊三角形的性質(zhì)和判定方法.

  教學(xué)難點

  等邊三角形性質(zhì)的應(yīng)用

  教學(xué)過程

  I創(chuàng)設(shè)情境,提出問題

  回顧上節(jié)課講過的等邊三角形的有關(guān)知識

  1.等邊三角形是軸對稱圖形,它有三條對稱軸.

  2.等邊三角形每一個角相等,都等于60°

  3.三個角都相等的三角形是等邊三角形.

  4.有一個角是60°的等腰三角形是等邊三角形.

  其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.

  II例題與練習(xí)

  1.△ABC是等邊三角形,以下三種方法分別得到的.△ADE都是等邊三角形嗎,為什么?

 、僭谶匒B、AC上分別截取AD=AE.

 、谧鳌螦DE=60°,D、E分別在邊AB、AC上.

 、圻^邊AB上D點作DE∥BC,交邊AC于E點.

  2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大。

  分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

  III課堂小結(jié)

  1、等腰三角形和性質(zhì)

  2、等腰三角形的條件

  V布置作業(yè)

  1.教科書第147頁練習(xí)1、2

  2.選做題:

  (1)教科書第150頁習(xí)題14.3第ll題.

  (2)已知等邊△ABC,求平面內(nèi)一點P,滿足A,B,C,P四點中的任意三點連線都構(gòu)成等腰三角形.這樣的點有多少個?

 。3)《課堂感悟與探究》

  5

八年級數(shù)學(xué)教案 篇4

  課時目標

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意義、分式的值是否等于零的識別方法。

  教學(xué)重點

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

  教學(xué)難點:

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的`條件。

  教學(xué)時間:一課時。

  教學(xué)用具:投影儀等。

  教學(xué)過程:

  一.復(fù)習(xí)提問

  1.什么是整式?什么是單項式?什么是多項式?

  2.判斷下列各式中,哪些是整式?哪些不是整式?

 、伲玬2 ②1+x+y2- ③ ④

 、 ⑥ ⑦

  二.新課講解:

  設(shè)問:不是整工式子中,和整式有什么區(qū)別?

  小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

  練習(xí):下列各式中,哪些是分式哪些不是?

 。1)、、(2)、(3)、(4)、(5)x2、(6)+4

  強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。

  2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

  練習(xí):課后練習(xí)P6練習(xí)1、2題

  設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)

  例題講解:課本P5例題1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

 。ò鍟忸}過程。)

  3.小結(jié):分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。

  增加例題:當x取什么值時,分式有意義?

  解:由分母x2-4=0,得x=±2。

  ∴ 當x≠±2時,分式有意義。

  設(shè)問:什么時候分式的值為零呢?

  例:

  解:當 ① 分式的值為零

八年級數(shù)學(xué)教案 篇5

  知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標:會用變化的量描述事物

  情感目標:回用運動的觀點觀察事物,分析事物

  重點:函數(shù)的概念

  難點:函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計算器

  教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的.取值范圍

  教學(xué)設(shè)計:

  引入:

  信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

 、 這張圖告訴我們哪些信息?

 、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應(yīng)的數(shù):

 、 這表告訴我們哪些信息?

 、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?

  一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長方形的寬一定時,其長與面積;

  (6) 等腰三角形的底邊長與面積;

  (7) 某人的年齡與身高;

  活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時,油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動2:練習(xí)教材9頁練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

初中八年級數(shù)學(xué)教案11-03

八年級的數(shù)學(xué)教案15篇12-14

【熱門】八年級數(shù)學(xué)教案11-29

八年級數(shù)學(xué)教案【熱】11-29

八年級數(shù)學(xué)教案【薦】12-06

【熱】八年級數(shù)學(xué)教案12-07

八年級上冊數(shù)學(xué)教案11-09

人教版八年級數(shù)學(xué)教案11-04