- 相關推薦
不等式 —— 初中數(shù)學第二冊教案
不等式的基本性質
教學目標
1. 使學生掌握不等式的三條基本性質;
2. 培養(yǎng)學生觀察、分析、比較的能力,提高他們靈活地運用所學知識解題的能力.
教學重點和難點
重點:不等式的三條基本性質的運用.
難點:不等式的基本性質3的運用.
課堂教學過程設計
一、從學生原有的認知結構提出問題
1. 什么叫不等式?說出不等式的三條基本性質.
2. 當x取下列數(shù)值時,不等式1-5x<16是否成立?
3,-4,-3,4,2.5,0,-1.
3. 用不等式表示下列數(shù)量關系:
(1) x的3倍大于x的2倍與5的差; (3)y的
(2) y的一半與4的和是負數(shù); (4)5與a的4倍的差不是正數(shù).
4. 按照下列條件寫出仍然成立的不等式,并說明根據(jù)不等式的哪一條基本性質:
(1)m>n,兩邊都減去3; (2)m>n,兩邊同乘以3;
(3)m>n,兩邊同乘以-3; (4)m>n,兩邊同乘以-3;
(5)m>n,兩邊同乘以 .
(以上各題中,從第2題開始,用投影儀打在屏幕上.學生在回答上述問題時,如遇到困難,教師應做適當點撥)在學生回答完上述問題的基礎上,教師指出:本節(jié)課我們將通過學習例題和練習,進一步鞏固并熟練掌握不等式的基本性質,尤其是不等式基本性質。
二、講授新課
例1 在下列各題橫線上填入不等號,使不等式成立.并說明是根據(jù)哪一條不等式基本性質.
(1)若a–3<9,則a_____12; (2)若-a<10,則a_____–10;
(3)若
答:(1)a<12,根據(jù)不等式基本性質1. (2)a>-10,根據(jù)不等式基本性質3.
(3)a>-4,根據(jù)不等式基本性質2. (4)a<0,根據(jù)不等式基本性質3.
(在講授本課時,應啟發(fā)學和在添加不等號“>”或“<”時,要和題目中的已知條件進行對比,觀察它是根據(jù)不等式的哪條基本性質,是怎樣由已知條件變形得到的.同時還應強調在運用不等式基本性質3時,不等號要改變方向=
例2 已知,用a<0,“<”或“>”號填空:
(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0.
答:(1)a+2<2,根據(jù)不等式基本性質1. (2)a-1<-1,根據(jù)不等式基本性質1.
(3)因為3a,根據(jù)不等式基本性質2. (4)-
(5)因為a<0,兩邊同乘以a<0,由不等式基本性質3,得a2>0.
(6)因為a<0,兩邊同乘以a2>0,由不等式基本性質2,得a3<0.
(7)因為a<0,兩邊同加上-1,由不等式基本性質1,得a-1<-1.
又已知,-1<0,所以a-1<0.
(8)因為.a<0,所以a≠0,所以|a|>0.
(本例題除了進一步運用不等式的三條基本性質外,還涉及了一些舊的基礎知識,如a<0表示a是負數(shù);a>0表示a是正數(shù);|a|是非負數(shù).后面幾個小題較靈活,條件由具體數(shù)字改為抽象的字母,這里字母代表正數(shù)還是代表負數(shù)是解決問題的關鍵)
例外 判斷下列各題的推導是否正確?為什么?(投影)(請學生回答)
(1)因為7.5>5.7,所以-7.5<-5.7; (2)因為a+8>4,,所以a>-4; (3)因為4a>4b,所以a>b; (4)因為a<b,所以
(5)因為
(7)因為3>2,所以3a>2a.
答:(1)正確,根據(jù)不等式基本性質3. (2)正確,根據(jù)不等式基本性質1.
(3)正確,根據(jù)不等式基本性質2. (4)不對,根據(jù)不等式基本性質3,應改為
答:(1)正確,根據(jù)不等式基本性質3. (2)正確,根據(jù)不等式基本性質1.
(3)正確,根據(jù)不等式基本性質2. (4)不對,根據(jù)不等式基本性質3,應改為
(5)不對,根據(jù)不等式基本性質5,應改為a<4.
(6)正確,根據(jù)不等式基本性質1. (7)不對,應分情況逐一討論.
當a>0時,3a>2a.(不等式基本性質2)
當a=0時,3a<2a.
當a<0時,3a<2a.(不等式基本性質3)
(當學生在回答本題的過程中,當遇到困難或問題時,教師應做適當引導、啟發(fā)、幫助)
三、課堂練習(投影)
1.按照下列條件,寫出仍能成立的不等式:
(1)由-2<-1,兩邊都加-a; (2)由-4x<0,兩邊都乘以-
(3)由7>5,兩邊都乘以不為零的-a.
2?用“>”或“<”號填空:
(1)當a-b<0時,a______b: (2)當a<0,b<0時,ab_____0;
(3)當a<0,b<0時,ab____0; (4)當a>0,b<0時,ab____0;
(5)若a____0,b<0,則ab>0; (6)若<0,且b<0,則a_____0.
四、師生共同小結
在師生共同回顧本節(jié)課所學內容的基礎上,教師指出:①在利用不等式的基本性質進行變形時,當不等式的兩邊都乘以(或除以)同一個字母,字母代表什么數(shù)是問題的關鍵,這決定了是用不等式基本性質2還是基本性質3,也就是不等號是否要改變方向的問題;②運用不等式基本性質3時,要變兩個號,一個性質符號,另一個是不等號.
五、作業(yè)
1.根據(jù)不等式的基本性質,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-1<0; (2)
(3)3x>7; (4)-
2.設a<b,用“>”或“>”號連接下列各題中的兩個代數(shù)式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
(4)
3.用“>”號或“<”號填空:
(1)若a-b<0,則a_____b; (2)若b<0,則a+b_____a;
(3)若a=0,則a+b_____b; (4)若
(5)b<a<2,則(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b).
課堂教學設計說明
由于本節(jié)課的教學目標是使學生進一步掌握不等式基本性質,尤其是基本性質3.故在設計教學過程時,注意在教師的主導作用下讓學生以練為主,從而使學生在初步掌握不等式的三條基本性質的基礎上,通過口答,筆做,討論等不同的方式的練習,提高學生將不等式正確、靈活進行變形的能力.
不等式的基本性質
教學目標
1. 使學生掌握不等式的三條基本性質;
2. 培養(yǎng)學生觀察、分析、比較的能力,提高他們靈活地運用所學知識解題的能力.
教學重點和難點
重點:不等式的三條基本性質的運用.
難點:不等式的基本性質3的運用.
課堂教學過程設計
一、從學生原有的認知結構提出問題
1. 什么叫不等式?說出不等式的三條基本性質.
2. 當x取下列數(shù)值時,不等式1-5x<16是否成立?
3,-4,-3,4,2.5,0,-1.
3. 用不等式表示下列數(shù)量關系:
(1) x的3倍大于x的2倍與5的差; (3)y的
(2) y的一半與4的和是負數(shù); (4)5與a的4倍的差不是正數(shù).
4. 按照下列條件寫出仍然成立的不等式,并說明根據(jù)不等式的哪一條基本性質:
(1)m>n,兩邊都減去3; (2)m>n,兩邊同乘以3;
(3)m>n,兩邊同乘以-3; (4)m>n,兩邊同乘以-3;
(5)m>n,兩邊同乘以 .
(以上各題中,從第2題開始,用投影儀打在屏幕上.學生在回答上述問題時,如遇到困難,教師應做適當點撥)在學生回答完上述問題的基礎上,教師指出:本節(jié)課我們將通過學習例題和練習,進一步鞏固并熟練掌握不等式的基本性質,尤其是不等式基本性質。
二、講授新課
例1 在下列各題橫線上填入不等號,使不等式成立.并說明是根據(jù)哪一條不等式基本性質.
(1)若a–3<9,則a_____12; (2)若-a<10,則a_____–10;
(3)若
答:(1)a<12,根據(jù)不等式基本性質1. (2)a>-10,根據(jù)不等式基本性質3.
(3)a>-4,根據(jù)不等式基本性質2. (4)a<0,根據(jù)不等式基本性質3.
(在講授本課時,應啟發(fā)學和在添加不等號“>”或“<”時,要和題目中的已知條件進行對比,觀察它是根據(jù)不等式的哪條基本性質,是怎樣由已知條件變形得到的.同時還應強調在運用不等式基本性質3時,不等號要改變方向=
例2 已知,用a<0,“<”或“>”號填空:
(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0.
答:(1)a+2<2,根據(jù)不等式基本性質1. (2)a-1<-1,根據(jù)不等式基本性質1.
(3)因為3a,根據(jù)不等式基本性質2. (4)-
(5)因為a<0,兩邊同乘以a<0,由不等式基本性質3,得a2>0.
(6)因為a<0,兩邊同乘以a2>0,由不等式基本性質2,得a3<0.
(7)因為a<0,兩邊同加上-1,由不等式基本性質1,得a-1<-1.
又已知,-1<0,所以a-1<0.
(8)因為.a<0,所以a≠0,所以|a|>0.
(本例題除了進一步運用不等式的三條基本性質外,還涉及了一些舊的基礎知識,如a<0表示a是負數(shù);a>0表示a是正數(shù);|a|是非負數(shù).后面幾個小題較靈活,條件由具體數(shù)字改為抽象的字母,這里字母代表正數(shù)還是代表負數(shù)是解決問題的關鍵)
例外 判斷下列各題的推導是否正確?為什么?(投影)(請學生回答)
(1)因為7.5>5.7,所以-7.5<-5.7; (2)因為a+8>4,,所以a>-4; (3)因為4a>4b,所以a>b; (4)因為a<b,所以
(5)因為
(7)因為3>2,所以3a>2a.
答:(1)正確,根據(jù)不等式基本性質3. (2)正確,根據(jù)不等式基本性質1.
(3)正確,根據(jù)不等式基本性質2. (4)不對,根據(jù)不等式基本性質3,應改為
答:(1)正確,根據(jù)不等式基本性質3. (2)正確,根據(jù)不等式基本性質1.
(3)正確,根據(jù)不等式基本性質2. (4)不對,根據(jù)不等式基本性質3,應改為
(5)不對,根據(jù)不等式基本性質5,應改為a<4.
(6)正確,根據(jù)不等式基本性質1. (7)不對,應分情況逐一討論.
當a>0時,3a>2a.(不等式基本性質2)
當a=0時,3a<2a.
當a<0時,3a<2a.(不等式基本性質3)
(當學生在回答本題的過程中,當遇到困難或問題時,教師應做適當引導、啟發(fā)、幫助)
三、課堂練習(投影)
1.按照下列條件,寫出仍能成立的不等式:
(1)由-2<-1,兩邊都加-a; (2)由-4x<0,兩邊都乘以-
(3)由7>5,兩邊都乘以不為零的-a.
2?用“>”或“<”號填空:
(1)當a-b<0時,a______b: (2)當a<0,b<0時,ab_____0;
(3)當a<0,b<0時,ab____0; (4)當a>0,b<0時,ab____0;
(5)若a____0,b<0,則ab>0; (6)若<0,且b<0,則a_____0.
四、師生共同小結
在師生共同回顧本節(jié)課所學內容的基礎上,教師指出:①在利用不等式的基本性質進行變形時,當不等式的兩邊都乘以(或除以)同一個字母,字母代表什么數(shù)是問題的關鍵,這決定了是用不等式基本性質2還是基本性質3,也就是不等號是否要改變方向的問題;②運用不等式基本性質3時,要變兩個號,一個性質符號,另一個是不等號.
五、作業(yè)
1.根據(jù)不等式的基本性質,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-1<0; (2)
(3)3x>7; (4)-
2.設a<b,用“>”或“>”號連接下列各題中的兩個代數(shù)式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
(4)
3.用“>”號或“<”號填空:
(1)若a-b<0,則a_____b; (2)若b<0,則a+b_____a;
(3)若a=0,則a+b_____b; (4)若
(5)b<a<2,則(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b).
課堂教學設計說明
由于本節(jié)課的教學目標是使學生進一步掌握不等式基本性質,尤其是基本性質3.故在設計教學過程時,注意在教師的主導作用下讓學生以練為主,從而使學生在初步掌握不等式的三條基本性質的基礎上,通過口答,筆做,討論等不同的方式的練習,提高學生將不等式正確、靈活進行變形的能力.
【不等式 —— 初中數(shù)學第二冊教案】相關文章:
同底數(shù)冪的乘法初中數(shù)學第二冊教案(精選11篇)04-13
蘇教版初中語文第二冊《春筍》教案08-21
初中數(shù)學 教案02-24
初中數(shù)學教案08-12
初中數(shù)學《矩形》教案04-18
初中數(shù)學命題教案02-23
初中數(shù)學矩形教案12-30
初中數(shù)學《圓 》教案12-30
初中數(shù)學方差教案12-28
初中數(shù)學直線教案12-29