- 相關推薦
數(shù)學教案-方程和它的解
一、素質教育目標
。ㄒ唬┲R教學點
1.通過本節(jié)知識的學習,使學生清楚了解方程、方程的解的概念,以及解方程的含義.
2.讓學生學會根據(jù)條件列出方程.
(二)能力訓練點
1.通過例2的教學,培養(yǎng)學生解決數(shù)學問題的思想方法和綜合分析問題的思維能力.
2.通過例3方程的解的檢驗問題培養(yǎng)學生準確解題的能力及數(shù)學問題的嚴密性.
。ㄈ┑掠凉B透點
從已知到未知,從特殊到一般的認識問題的方法.
(四)美育滲透點
通過本節(jié)課的學習,學生會進一步體會到概念中語言的準確美與簡潔美.
二、學法引導
1.教學方法:以嘗試指導為主、練習鞏固為輔,體現(xiàn)學生的主體活動,增強課堂上民主意識的體現(xiàn).
2.學生學法:識記→練習
三、重點、難點、疑點及解決辦法
1.重點:使學生了解方程的有關概念,會檢驗方程的解,并能根據(jù)求某數(shù)的簡單條件,列出某數(shù)為未知數(shù)的一元方程(僅限于一次,二次).
2.難點:列關于某數(shù)的簡單方程.
3.疑點:關于方程解的理解.
四、課時安排
l課時
五、教具學具準備
投影儀或電腦、自制膠片.
六、師生互動活動設計
教師出示探索性練習題,學生討論解答,得出有關概念,教師出示鞏固性練習題,學生以多種形式完成.
七、教學步驟
。ǎ﹦(chuàng)設情境,復習導入
師:我們上一節(jié)共同學習了等式和等式的性質,我們知道了用“等號”表示相等關系的式子叫做等式.下面請同學們思考如下問題:
。ǔ鍪就队1)或電腦顯示如下
1.如果 ,那么 ,為什么?(根據(jù)什么等式性質)
2.如果 ,那么 ,根據(jù)等式什么性質?
3.如果 ,那么 ,根據(jù)等式什么性質?
4.如果 ,那么 ,根據(jù)等式什么性質?
師:同學們對這組問題回答的非常準確,條理清楚.說明我們掌握新知識,學習新方法的勁頭很足,望同學們發(fā)揚.
(二)探索新知,講授新課
師:請同學們觀察上面題中等式:
;
;
;
.
這些等式中,象-3,6,2,-1,3,-7,5,8這些數(shù)都是已知的,我們把這些數(shù)叫做已知數(shù).
再觀察式中的 也表示一個數(shù),不難發(fā)現(xiàn)它相當于一個問號“?”,在研究它之前是未知的,像這樣的數(shù)叫做未知數(shù),像這樣的式子,我們已經(jīng)知道它是等式,因此方程就是含有未知數(shù)的等式.
師提出問題:
。1)請同學們把 這個結果代入方程 中,看一看會有什么結果?當學生能夠回答出 時方程左右兩邊相等這一結果后,引出概念:使方程左右兩邊的值相等的未知數(shù)的值,叫做方程的解,只有一個未知數(shù)的方程的解也叫方程的根.
(2)再觀察 到 的變形過程
a 被減數(shù)等于差加上減數(shù).
得 ,
即 .
再據(jù)一個因數(shù)等于積除以另一個因數(shù),得 ,即 .
(說明是小學解法)
e 兩邊都加上7,得, ,
即 .
兩僆都除以5,得,
.
提出問題:上面兩種變形最終我們求出了什么?
兩種方法所得結果一樣嗎?
【教法說明】通過上面提問由學生展開討論,教師歸納上面過程實質上就是求方程解的過程.
師:求得方程解的過程,叫做解方程.
如:求得方程 的解的兩種方法,都可以叫解方程 .
。ㄈ﹪L試反饋,鞏固練習
師提出問題:現(xiàn)在請同學們分組討論,由各組派代表回答,如何判斷一個式子是方程?
學活動:分組討論,準備派代表回答,回答結果:(1)含有未知數(shù),(2)等式.
。ǔ鍪就队2)
例1 判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù),如果不是,說明為什么?
① ;② ;③ ;④ .
【教法說明】例1教學應注意,方程必須是含有未知數(shù)的等式.未知數(shù)的系數(shù)是1,可以省寫.這個1,也是已知數(shù),已知數(shù)包括它的符號.
鞏固練習:
。ǔ鍪就队3)
判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么?
① ;② ;③ ;④ .
【教法說明】這組可采用分組搶答形式,用競賽加分的辦法完成以增加學生學習的積極性,如:分成四組,班長記分,教師主持.
師提出問題:如果設某數(shù)為 ,請大家把下面的句子用方程的形式表示出來,看誰做得快.
。ǔ鍪就队4)
(1)某數(shù)的 與1的和是2;
。2)某數(shù)的4倍等于某數(shù)的3倍與7的差;
。3)某數(shù)與8的差的 等于0.
學生活動:學生動筆動腦分析得出方程,由一個學生寫在黑板上,如:
。1) ;(4) ;(3) .
【教法說明】為了使學生掌握,③小題應提醒學生注意運算的順序,必要時加上括號.另外有時得出方程可有形式上的區(qū)別.
師提出問題:請同學們選擇適當?shù)奈粗獢?shù),列出例2中的方程:
。ǔ鍪就队5)
例2 根據(jù)下列條件列出方程:
。1)某數(shù)比它的 大 ;
。2)某數(shù)比它的2倍小3;
。3)某數(shù)的一半比某數(shù)的3倍大4;
。4)某數(shù)比它的平方小42.
學生活動:要求學生獨立完成上面的題目,完成后與小組同學討論,對比,分組說出所列方程中,形式不一樣地方.
【教法說明】教師可布置學生自編兩個題目,留給同桌同學列方程,找代表說一說題目和方程.
。ㄋ模┳兪接柧殻囵B(yǎng)能力
。ǔ鍪就队6)
1.下列各式是不是方程,如果是,指出它的未知數(shù)是什么?
① ; ② ; ③ ; ④ ; ⑥ ;
⑦ ; ⑧ ; ⑨ ; ⑩ .
【教法說明】這組題用小組競賽的形式完成,優(yōu)勝組負責編一個這樣的題目,點其他組任一同學解答,答對者給以掌聲鼓勵.
。ǔ鍪就队7)
2.請同學們用兩種方法,求出下面方程的解.
、 ;② ;③ ;④ .
【教法說明】這組題由學生在練習本上演練,教師指定學生口述,征求全體同學意見.
。ǔ鍪就队8)
3.請同學們選用適當?shù)奈粗獢?shù),寫一個方程使方程的解是下面的數(shù):
。1)1; (2)-2; (3)0; (4)2.
學生活動:分組編寫,互相交換,觀察所作方程的特征,互相交流經(jīng)驗、方法,增強協(xié)作意識.
【教法說明】這組題難度較大,教師在學生編題時要注意后進生的動態(tài),多啟發(fā)他們動腦筋,開發(fā)數(shù)學的逆向思維.
(五)歸納小結
師:本課內容與前兩節(jié)內容的聯(lián)系,可以用下圖表示:
也就是說,方程是含有未知數(shù)的等式,可以用等式的性質來解方程.
八、隨堂練習
1.選擇題
。1)下列各式中是方程的是( )
A. B. C. D.
。2)下列說法正確的是( )
A.方程中未知數(shù)的值就是方程的解
B.方程的解也是方程的根
C. 是方程 的解
D. 是方程 的解
2.根據(jù)條件列出方程
。1)某數(shù)的一半比這個數(shù)小2;
(2)某數(shù)的絕對值比這個數(shù)的10%多10.
3.檢驗 是否是方程 的解.
九、布置作業(yè)
思考題:怎樣檢驗某個數(shù)是某方程的解,討論后每位同學交一份作業(yè)紙.
十、板書設計
十一、隨堂練習答案
1.D D
2.設某數(shù)為 。1) ; 。2) .
3.略
答:將某數(shù)代入方程,比較左右兩邊是否相等,即可知某數(shù)是否是方程的解
【數(shù)學教案-方程和它的解】相關文章:
解簡易方程數(shù)學教案02-08
列方程解應用題數(shù)學教案06-21
解簡易方程教學反思04-07
《解簡易方程》教學反思03-10
解簡易方程的教學反思02-22
《解簡易方程》說課稿范文05-09
五年級數(shù)學教案:解簡易方程08-20
數(shù)學解簡易方程教學反思02-08
解簡易方程教學反思11篇04-15
解簡易方程教學反思(11篇)04-15